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Cooperative Decode-and-Forward ARQ Relaying:
Performance Analysis and Power Optimization
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and John D. Matyjas, Member, IEEE

Abstract—In this paper we develop a new analytical method-
ology for the evaluation of the outage probability of coopera-
tive decode-and-forward (DF) automatic-repeat-request (ARQ)
relaying under packet-rate fading (fast fading or block fading)
channels, where the channels remain fixed within each ARQ
transmission round, but change independently from one round
to another. We consider a single relay forwarding Alamouti-
based retransmission signals in the cooperative ARQ scheme.
In particular, (i) we derive a closed-form asymptotically tight
(as SNR → ∞) approximation of the outage probability; (ii) we
show that the diversity order of the DF cooperative ARQ relay
scheme is equal to 2𝐿 − 1, where 𝐿 is the maximum number
of ARQ (re)transmissions; and (iii) we develop the optimum
power allocation for the DF cooperative ARQ relay scheme. The
closed-form expression clearly shows that the achieved diversity
is partially due to the DF cooperative relaying and partially due
to the fast fading nature of the channels (temporal diversity).
With respect to power allocation, it turns out that the proposed
optimum allocation scheme depends only on the link quality of
the channels related to the relay, and compared to the equal
power allocation scheme it leads to SNR performance gains of
more than 1 dB. Numerical and simulation studies illustrate the
theoretical developments.

Index Terms—Automatic-repeat-request (ARQ) protocol, co-
operative decode-and-forward (DF) relaying, outage probability,
wireless networks.

I. INTRODUCTION

CONVENTIONAL wireless networks involve point-to-
point communication links and for that reason do not

guarantee reliable transmissions over severe fading channels.
On the other hand, cooperative wireless networks exhibit
increased network reliability due to the fact that informa-
tion can be delivered with the cooperation of other users
in networks [1]–[14]. In particular, in cooperative systems
each user utilizes other cooperative users to create a virtual
antenna array and exploit spatial diversity that minimizes the
effects of fading and improves overall system performance.
Cooperative communications, also known as relay channels,
was first introduced in [9] in which a three-way channel was
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analyzed based on the capacity region. In [10]–[12], relay
channels have been analyzed from an information-theoretic
point of view. With respect to practical/realistic cooperative
communication protocols for wireless networks, past literature
includes, but is not limited to, the work in [1]–[7], [13], [14]
and the references therein.

Automatic-repeat-request (ARQ) protocols for wireless
communications have been studied extensively in the past
and proved themselves as efficient control mechanisms for
reliable data packet transmissions at the data link layer [15]–
[21]. The basic idea of ARQ protocols is that a receiver
requests retransmission when a packet is not correctly re-
ceived. Recently, in an effort to increase network reliability
over poor quality channels, ARQ protocols were studied in the
context of cooperative relay networks [22]–[27]. In particular,
[22] was among the first such studies to present a general
framework of cooperative ARQ relay networks. It was shown
that cooperative ARQ relay networks have great advantages in
terms of throughput, delay, and energy consumption compared
to conventional multihop ARQ networks in which point-to-
point ARQ links are concatenated to form network routes. In
[23], [24], information-theoretic analysis was developed and
upper bounds for the diversity order of a decode-and-forward
(DF) cooperative ARQ relay scheme were characterized for
both slow and fast fading channels as a means to study the
diversity-multiplexing-delay tradeoff. In [25], [26], a closed-
form expression of the outage probability of the DF coopera-
tive ARQ relay scheme was obtained for slow fading channels,
but, unfortunately, the introduced approach cannot be extended
to fast fading channels.

Outage probability is, arguably, a fundamental performance
metric for wireless ARQ relay schemes and so is the diversity
order. In this paper, we develop a new analytical methodology
for the treatment of DF cooperative ARQ relay networks
in fast fading (packet-rate fading or block fading) channels,
in which each relay forwards Alamouti-based retransmission
signals. The analysis leads, for the first time, to a closed-
form asymptotically tight (as SNR → ∞) approximation of
the outage probability. The closed-form expression shows that
the overall diversity order of the DF cooperative ARQ relay
scheme is equal to 2𝐿− 1, where 𝐿 is the maximum number
of ARQ (re)transmissions. The achieved diversity is partially
due to the DF cooperative relaying and partially due to the
fast fading nature of the channels (temporal diversity due to
(re)transmissions over independent fading channels). We note
that the diversity of the direct ARQ scheme (without relaying)
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is only 𝐿 and it is due to the fast fading nature of the channels.
Based on the asymptotically tight approximation of the outage
probability, we are able to determine the optimum power that
needs to be allocated at the source and at the relay of the DF
cooperative ARQ relay scheme for any given total transmis-
sion power budget. The optimum power allocation depends on
the variance values of the channels involved and the maximum
number of (re)transmissions allowed by the protocol. It turns
out that the conventional equal-power allocation strategy is
not optimum, in general, and the optimum power allocation
relies heavily on the link quality of the channels related to the
relay. Extensive numerical and simulation results included in
this paper illustrate and validate the theoretical developments.

The paper is organized as follows. In Section II, we describe
briefly the DF cooperative ARQ relay scheme and the fast
(packet-rate) fading channel model. In Section III, we first
develop two useful lemmas which form the basis of our
analytical approach. Then we derive our asymptotically tight
approximation of the outage probability of DF cooperative
ARQ relay scheme. In this section, we also include the outage
probability expression of the direct ARQ transmission scheme
for comparison purposes. In Section IV, we determine the
optimum power allocation for the DF cooperative ARQ relay
scheme, and in Section V we present numerical and simulation
studies. Finally, some conclusions are drawn in Section VI.

II. SYSTEM MODEL

We consider a cooperative ARQ relay scheme with one
source, one relay and one destination as illustrated in Fig. 1.
The DF cooperative ARQ relay scheme works as follows.
First, a data packet of 𝑏 bits is encoded into a sequence
of length 𝐿𝑇 , where 𝐿 is the maximum number of ARQ
(re)transmission rounds allowed in the protocol and 𝑇 is the
duration of a single ARQ (re)transmission. Then, the sequence
comprises 𝐿 different blocks each of length 𝑇 . In each ARQ
(re)transmission round a block of the message is sent, so the
transmission rate is 𝑅 = 𝑏/𝑇 . When the source transmits a
block of the message to the destination, it is also received
by the relay. The destination indicates success or failure of
receiving the message by feeding back a single bit of acknowl-
edgement (ACK) or negtive-acknowledgement (NACK). The
feedback is assumed to be detected reliably both by the source
and by the relay. If an ACK is received or the retransmission
reaches the maximum number of rounds, the source stops
transmitting the current message and starts transmitting a new
message. If a NACK is received and the retransmission has
not reached the maximum number of rounds, the source sends
another block of the same message. If the relay decodes
successfully before the destination is able to, the relay starts
cooperating with the source by transmitting corresponding
blocks of the message to the destination by using a space-time
transmission scheme [23] (e.g. the Alamouti scheme [28]). The
destination combines the received signal in current round and
those in previous rounds to jointly decode the data packet.
After 𝐿 ARQ (re)transmission rounds, if the destination still
cannot decode the data packet, an outage is declared which
means that the mutual information of the DF cooperative ARQ
relay channel is below the transmission rate.

Fig. 1. Illustration of the cooperative ARQ relay scheme with one source,
one relay and one destination.

The DF cooperative ARQ relay scheme can be modeled
as follows. The received signal 𝑦𝑟,𝑚 at the relay at the 𝑚-th
(1 ≤ 𝑚 ≤ 𝐿) ARQ (re)transmission round can be modeled as

𝑦𝑟,𝑚 =
√
𝑃𝑠ℎ𝑠𝑟,𝑚𝑥𝑠 + 𝜂𝑟,𝑚, (1)

where 𝑃𝑠 is the transmitted power of the source signal 𝑥𝑠,
ℎ𝑠𝑟,𝑚 is the coefficient of the source-relay channel at the 𝑚-
th ARQ (re)transmission round, and 𝜂𝑟,𝑚 is the additive noise.
If the relay is not involved in forwarding, the received signal
𝑦𝑑,𝑚 at the destination at the 𝑚-th ARQ (re)transmission
round is

𝑦𝑑,𝑚 =
√
𝑃𝑠ℎ𝑠𝑑,𝑚𝑥𝑠 + 𝜂𝑑,𝑚, (2)

where ℎ𝑠𝑑,𝑚 is the source-destination channel coefficient at
the 𝑚-th ARQ (re)transmission round. If the relay receives
the data packet from the source successfully, it helps in
forwarding the packet to the destination using the Alamouti
scheme. Specifically, each block 𝑥𝑠 of the data sequence
can be considered as having two parts, 𝑥𝑠,1, and 𝑥𝑠,2 (i.e.
𝑥𝑠 = [𝑥𝑠,1 𝑥𝑠,2]). The relay forwards the block in the form of
𝑥𝑟 =

[−𝑥∗𝑠,2 𝑥∗𝑠,1
]
. The received signal 𝑦𝑑,𝑚 at the destination

at the 𝑚-th ARQ (re)transmission round can be written as

𝑦𝑑,𝑚 =
√
𝑃𝑠ℎ𝑠𝑑,𝑚𝑥𝑠 +

√
𝑃𝑟ℎ𝑟𝑑,𝑚𝑥𝑟 + 𝜂𝑑,𝑚, (3)

where 𝑃𝑟 is the transmitted power at the relay and ℎ𝑟𝑑,𝑚 is the
channel coefficient from the relay to the destination at the 𝑚-th
ARQ (re)transmission round. At the destination, the message
block 𝑥𝑠 can be recovered based on the orthogonal structure of
the Alamouti code [23], [28]. The channel coefficients ℎ𝑠𝑑,𝑚,
ℎ𝑠𝑟,𝑚 and ℎ𝑟𝑑,𝑚 are modeled as independent, zero-mean com-
plex Gaussian random variables with variance 𝜎2

𝑠𝑑, 𝜎
2
𝑠𝑟 and

𝜎2
𝑟𝑑, respectively. We consider a fast fading scenario, i.e. the

channels remain fixed within one ARQ (re)transmission round,
but change independently from one round to another (packet-
rate fading or block fading). The channel state information
is assumed to be known at the receiver and unknown at the
transmitter. The noise terms 𝜂𝑟,𝑚 and 𝜂𝑑,𝑚 are modeled as
zero-mean complex Gaussian random variables with variance
𝒩0.

III. OUTAGE PROBABILITY ANALYSIS

A. Two Lemmas

First we develop two lemmas that will play a key role in
analyzing the outage probability of the DF cooperative ARQ
relay scheme at high SNR. The first lemma reveals asymptotic
behavior for the cumulative distribution function of the sum
of two independent random variables, which are related to
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the mutual information of channel links in the cooperative
ARQ scheme. The second lemma studies a key function which
will be used to characterize the outage probability of the
cooperative ARQ scheme.

Lemma 1: Assume that u𝑠1,...,𝑠𝑀 and v𝑠1,...,𝑠𝑀 be two
independent scalar random variables. If their cumulative dis-
tribution functions (CDF) satisfy the following properties

lim
𝑠𝑖→∞
1≤𝑖≤𝑀

𝑀∏
𝑖=1

𝑠𝑑1𝑖 ⋅ Pr [u𝑠1,...,𝑠𝑀 < 𝑡] = 𝑎 ⋅ 𝑓(𝑡),

lim
𝑠𝑖→∞
1≤𝑖≤𝑀

𝑀∏
𝑖=1

𝑠𝑑2𝑖 ⋅ Pr [v𝑠1,...,𝑠𝑀 < 𝑡] = 𝑏 ⋅ 𝑔(𝑡),

where 𝑑1, 𝑑2, 𝑎 and 𝑏 are constants, 𝑓(𝑡) and 𝑔(𝑡) are monoton-
ically increasing functions, and the derivative of 𝑓(𝑡) (denoted
as 𝑓 ′(𝑡)) is integrable, then the CDF of the sum of the two
independent random variables follows the following property

lim
𝑠𝑖→∞
1≤𝑖≤𝑀

𝑀∏
𝑖=1

𝑠𝑑1+𝑑2𝑖 ⋅ Pr [u𝑠1,...,𝑠𝑀 + v𝑠1,...,𝑠𝑀 < 𝑡]

= 𝑎𝑏 ⋅
∫ 𝑡

0

𝑔(𝑥)𝑓 ′(𝑡− 𝑥)d𝑥. (4)

A proof of Lemma 1 is included in Appendix A. We note
that the special case of Lemma 1 with 𝑀 = 1 was presented
in [29]. Lemma 1 will be used to approximate the outage
probability of the ARQ schemes at high SNR scenario. In the
following, we define a key function 𝐹𝑛(𝛽1, ..., 𝛽𝑛; 𝑡) which
will be used to characterize the outage probability of the DF
cooperative ARQ relay scheme. For any integer 𝑛 ≥ 2 and
non-zero constants 𝛽1, 𝛽2, ⋅ ⋅ ⋅ , 𝛽𝑛, define

𝐹𝑛(𝛽1, ..., 𝛽𝑛; 𝑡)

≜
∫ 𝑡

0

∫ 𝑥𝑛

0

⋅ ⋅ ⋅
∫ 𝑥2

0

2𝛽1𝑥1+𝛽2𝑥2+⋅⋅⋅+𝛽𝑛𝑥𝑛d𝑥1d𝑥2 ⋅ ⋅ ⋅ d𝑥𝑛.
(5)

The following lemma evaluates 𝐹𝑛(𝛽1, ..., 𝛽𝑛; 𝑡) in closed-
form1, and its proof can be found in Appendix B.

Lemma 2: For any integer 𝑛 ≥ 2 and non-zero constants
𝛽1, 𝛽2, ⋅ ⋅ ⋅ , 𝛽𝑛, the function 𝐹𝑛(𝛽1, ..., 𝛽𝑛; 𝑡) can be calcu-
lated as follows

𝐹𝑛(𝛽1, ..., 𝛽𝑛; 𝑡)

=
∑

𝛿1,...,𝛿𝑛−1

∈{0,1}

(−1)𝑛+𝛿1+⋅⋅⋅+𝛿𝑛−1(ln2)−𝑛∏𝑛
𝑚=1

[∑𝑚
𝑙=1 𝑖𝑚,𝑙(𝜹)𝛽𝑙

] (2[∑𝑛
𝑙=1 𝑖𝑛,𝑙(𝜹)𝛽𝑙]𝑡 − 1

)
,

(6)

where the variables 𝛿1, 𝛿2, ..., 𝛿𝑛−1 ∈ {0, 1}, 𝜹 ≜ {𝛿1, 𝛿2, ...,
𝛿𝑛−1}, and the coefficients {𝑖𝑚,𝑙(𝜹) : 1 ≤ 𝑚 ≤ 𝑛, 1 ≤ 𝑙 ≤
𝑚} are specified as

𝑖1,1(𝜹) = 𝑖2,2(𝜹) = ⋅ ⋅ ⋅ = 𝑖𝑛,𝑛(𝜹) = 1,

and, for any 𝑚 = 2, 3, ..., 𝑛,

𝑖𝑚,𝑙(𝜹) = 𝛿𝑚−1 ⋅ 𝑖𝑚−1,𝑙(𝜹), 𝑙 = 1, 2, ...,𝑚− 1.

1Arguably, the significance of Lemma 2 goes beyond the problem consid-
ered in this paper.

B. Outage Probability of the Direct ARQ Transmission
Scheme

For comparison purposes, in this subsection, we evaluate
the outage probability of the direct ARQ transmission scheme.
The destination of a direct ARQ transmission scheme receives
information from the source directly, without involving the
relay. The mutual information between the source and the
destination in the 𝑚-th round of the direct ARQ transmission
scheme is2

𝐼𝑠𝑑,𝑚 = log2

(
1 +

𝑃𝑠
𝒩0

∣ℎ𝑠𝑑,𝑚∣2
)
. (7)

The total mutual information after 𝐿 ARQ rounds is 𝐼𝑡𝑜𝑡𝑠𝑑 =∑𝐿
𝑚=1 𝐼𝑠𝑑,𝑚. Thus, the outage probability of the direct ARQ

scheme after 𝐿 ARQ rounds is

𝑃 𝑜𝑢𝑡,𝐿 = Pr
[
𝐼𝑡𝑜𝑡𝑠𝑑 < 𝑅

]
= Pr

[
𝐿∑

𝑚=1

log2

(
1 +

𝑃𝑠
𝒩0

∣ℎ𝑠𝑑,𝑚∣2
)
< 𝑅

]
. (8)

A closed-form expression of (8) is not tractable. However,
an approximation of the outage probability for high-SNR can
be obtained as an application of Lemma 1. Specifically, let
𝑢𝑚 = log2

(
1 + 𝑃𝑠

𝒩0
∣ℎ𝑠𝑑,𝑚∣2

)
and 𝑠 = 𝑃𝑠

𝒩0
. Since ∣ℎ𝑠𝑑,𝑚∣2 is

an exponential random variable with parameter 𝜎−2
𝑠𝑑 , we have

lim
𝑠→∞ 𝑠 ⋅ Pr [𝑢𝑚 < 𝑡] = lim

𝑠→∞ 𝑠 ⋅ Pr

[
∣ℎ𝑠𝑑,𝑚∣2 < 2𝑡 − 1

𝑠

]
=

1

𝜎2
𝑠𝑑

(2𝑡 − 1). (9)

Since 𝑢𝑚, 1 ≤ 𝑚 ≤ 𝐿, are independent random variables,
by applying Lemma 1 with 𝑀 = 1 recursively, we have an
approximation of the outage probability at high-SNR as

𝑃 𝑜𝑢𝑡,𝐿 ≈ 𝑔𝐿(𝑅)

( 𝒩0

𝜎2
𝑠𝑑𝑃𝑠

)𝐿
, (10)

where 𝑔𝐿(⋅) is defined as

𝑔𝑛(𝑡) =

∫ 𝑡

0

𝑔𝑛−1(𝑥)𝑓
′(𝑡− 𝑥)d𝑥, 𝑛 ≥ 1, (11)

with 𝑔0(𝑡) = 1 and 𝑓(𝑡) = 2𝑡 − 1. Expressions (10) and
(11) appeared also in [29]. However, the calculation of the
coefficient 𝑔𝐿(𝑅) that involves 𝐿 recursive integrals was
not treated in [29]. In this paper, we develop a closed-form
expression for the function 𝑔𝑛(𝑡) for any 𝑛 ≥ 1. Specifically,
since 𝑔𝑛(𝑡) =

∫ 𝑡
0 𝑔𝑛−1(𝑥)𝑓

′(𝑡 − 𝑥)d𝑥 and 𝑓 ′(𝑡) = 2𝑡ln2, we

2We assume that the transmission time in each round is long enough for
the validity of the average mutual information in (7).
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have

𝑔𝑛(𝑡) =

∫ 𝑡

0

∫ 𝑥𝑛−1

0

⋅ ⋅ ⋅
∫ 𝑥2

0

𝑔1(𝑥1)𝑓
′(𝑥2 − 𝑥1)𝑓

′(𝑥3 − 𝑥2) ⋅ ⋅ ⋅
×𝑓 ′(𝑥𝑛−1 − 𝑥𝑛−2)𝑓

′(𝑡− 𝑥𝑛−1) d𝑥1d𝑥2 ⋅ ⋅ ⋅ d𝑥𝑛−1

=

∫ 𝑡

0

∫ 𝑥𝑛−1

0

⋅ ⋅ ⋅
∫ 𝑥2

0

(2𝑥1 − 1)(ln2)𝑛−12𝑥2−𝑥12𝑥3−𝑥2 ⋅ ⋅ ⋅
×2𝑥𝑛−1−𝑥𝑛−22𝑡−𝑥𝑛−1d𝑥1d𝑥2 ⋅ ⋅ ⋅ d𝑥𝑛−1

= 2𝑡(ln2)𝑛−1

∫ 𝑡

0

∫ 𝑥𝑛−1

0

⋅ ⋅ ⋅
∫ 𝑥2

0

(1− 2−𝑥1)d𝑥1d𝑥2 ⋅ ⋅ ⋅ d𝑥𝑛−1

= 2𝑡
(ln2)𝑛−1

(𝑛− 2)!

∫ 𝑡

0

𝑥𝑛−2(1− 2−𝑡+𝑥) d𝑥.

Since
∫ 𝑡
0 𝑥

𝑛−2 d𝑥 = 1
𝑛−1 𝑡

𝑛−1, and from ([30], Eqn. 2.321)
we also have∫ 𝑡

0

𝑥𝑛−22𝑥 d𝑥 = −2𝑡
𝑛−1∑
𝑚=1

(𝑛− 2)!

(−ln2)𝑚(𝑛−𝑚− 1)!
𝑡𝑛−𝑚−1

+
(𝑛− 2)!

(−ln2)𝑛−1
,

therefore, a closed-form expression of 𝑔𝑛(𝑡) can be obtained
as follows

𝑔𝑛(𝑡) = 2𝑡
(𝑡 ⋅ ln2)𝑛−1

(𝑛− 1)!

+2𝑡
𝑛−1∑
𝑚=1

(−1)𝑚(𝑡 ⋅ ln2)𝑛−𝑚−1

(𝑛−𝑚− 1)!
+ (−1)𝑛

= 2𝑡
𝑛∑

𝑚=1

(−1)𝑛−𝑚

(𝑚− 1)!
(𝑡 ⋅ ln2)𝑚−1

+ (−1)𝑛, (12)

which can be calculated efficiently.

C. Outage Probability of the DF Cooperative ARQ Relay
Scheme

In this subsection, we derive the outage probability of the
DF cooperative ARQ relay scheme under packet-rate fading
conditions. In the DF cooperative ARQ relay scheme, if the
relay decodes the message from the source correctly, say, at
the 𝑘-th round, then at the (𝑘 + 1)-th round, the relay starts
forwarding appropriate ARQ blocks to the destination. Let
{𝑇𝑟 = 𝑘} denote the event of successful message decoding
by the relay at the 𝑘-th round and subsequent ARQ block
forwarding at the (𝑘 + 1)-th round for any 𝑘 = 1, 2, ⋅ ⋅ ⋅ , 𝐿−
1. Especially, let {𝑇𝑟 = 𝐿} denote the event that the relay
decodes unsuccessfully in the first 𝐿− 1 rounds (in this case,
no matter the relay decodes successfully or not at the 𝐿-th
round, it has no chance to help in forwarding).

Furthermore, let us use 𝑃 𝑜𝑢𝑡
𝑇𝑟=𝑘

to denote the conditional
probability that the destination decodes the message unsuc-
cessfully after 𝐿 ARQ (re)transmission rounds given that the
event {𝑇𝑟 = 𝑘} occurred. In other words, 𝑃 𝑜𝑢𝑡

𝑇𝑟=𝑘
denote

the outage probability at the destination despite the fact that
the relay started forwarding at the (𝑘 + 1)-th round for
any 𝑘 = 1, 2, ⋅ ⋅ ⋅ , 𝐿 − 1. Therefore, the outage probability
of the DF cooperative ARQ relay scheme after 𝐿 ARQ
(re)transmission rounds can be written as

𝑃 𝑜𝑢𝑡,𝐿 =

𝐿∑
𝑘=1

𝑃 𝑜𝑢𝑡
𝑇𝑟=𝑘 ⋅ Pr [𝑇𝑟 = 𝑘] . (13)

First, we calculate the probability of the event {𝑇𝑟 = 𝑘}, i.e.
Pr [𝑇𝑟 = 𝑘] for any 𝑘 = 1, 2, ⋅ ⋅ ⋅ , 𝐿. The mutual information
between the source and the relay in the 𝑚-th ARQ round is

𝐼𝑠𝑟,𝑚 = log2

(
1 +

𝑃𝑠
𝒩0

∣ℎ𝑠𝑟,𝑚∣2
)
. (14)

We note that the channels change independently over each
ARQ (re)transmission round in a fast fading scenario, so the
mutual information of fading channels can be viewed as a sum
of independent random variables. The probability that the relay
decodes the message successfully at the first round (𝑇𝑟 = 1)
is

Pr [𝑇𝑟 = 1] = Pr [𝐼𝑠𝑟,1 ≥ 𝑅] = exp

(
−2𝑅 − 1

𝜎2
𝑠𝑟

⋅ 𝒩0

𝑃𝑠

)
. (15)

For any 𝑇𝑟 = 𝑘, 𝑘 = 2, 3, ..., 𝐿− 1, we have

Pr [𝑇𝑟 = 𝑘] = Pr

[
𝑘−1∑
𝑚=1

𝐼𝑠𝑟,𝑚 < 𝑅,

𝑘∑
𝑚=1

𝐼𝑠𝑟,𝑚 ≥ 𝑅

]

= Pr

[
𝑅− 𝐼𝑠𝑟,𝑘 ≤

𝑘−1∑
𝑚=1

𝐼𝑠𝑟,𝑚 < 𝑅

]

= Pr

[
𝑘−1∑
𝑚=1

𝐼𝑠𝑟,𝑚 < 𝑅

]
− Pr

[
𝑘∑

𝑚=1

𝐼𝑠𝑟,𝑚 < 𝑅

]

≈ 𝑔𝑘−1(𝑅)

( 𝒩0

𝜎2
𝑠𝑟𝑃𝑠

)𝑘−1

− 𝑔𝑘(𝑅)

( 𝒩0

𝜎2
𝑠𝑟𝑃𝑠

)𝑘
,

(16)

where 𝑔𝑘−1(⋅) and 𝑔𝑘(⋅) are specified in (12) in the previous
subsection. The approximation in (16) is obtained by applying
Lemma 1 with 𝑀 = 1 recursively. Finally, if 𝑇𝑟 = 𝐿, we have

Pr [𝑇𝑟 = 𝐿]=Pr

[
𝐿−1∑
𝑚=1

𝐼𝑠𝑟,𝑚 < 𝑅

]
≈𝑔𝐿−1(𝑅)

( 𝒩0

𝜎2
𝑠𝑟𝑃𝑠

)𝐿−1

.

(17)
To summarize, the probability Pr [𝑇𝑟 = 𝑘] in (13) can be given
by the following branch function

Pr [𝑇𝑟 = 𝑘] ≈⎧⎨
⎩

exp
(
− 2𝑅−1

𝜎2
𝑠𝑟

⋅ 𝒩0

𝑃𝑠

)
, 𝑘 = 1;

𝑔𝑘−1(𝑅)
(

𝒩0

𝜎2
𝑠𝑟𝑃𝑠

)𝑘−1

− 𝑔𝑘(𝑅)
(

𝒩0

𝜎2
𝑠𝑟𝑃𝑠

)𝑘
, 2 ≤ 𝑘 ≤ 𝐿−1;

𝑔𝐿−1(𝑅)
(

𝒩0

𝜎2
𝑠𝑟𝑃𝑠

)𝐿−1

, 𝑘 = 𝐿.

(18)

Next, we calculate the conditional outage probability 𝑃 𝑜𝑢𝑡
𝑇𝑟=𝑘

for any 𝑘 = 1, 2, ⋅ ⋅ ⋅ , 𝐿. This is done by the following
theorem.

Theorem 1: The conditional outage probability 𝑃 𝑜𝑢𝑡
𝑇𝑟=𝑘

, 1 ≤
𝑘 ≤ 𝐿, is given by

𝑃 𝑜𝑢𝑡
𝑇𝑟=𝑘 ≈

⎧⎨
⎩

𝑏𝑘(𝑅)
2𝐿−𝑘

(
𝒩0

𝜎2
𝑠𝑑𝑃𝑠

)𝐿 ( 𝒩0

𝜎2
𝑟𝑑𝑃𝑟

)𝐿−𝑘
, 1 ≤ 𝑘 ≤ 𝐿−1;

𝑔𝐿(𝑅)
(

𝒩0

𝜎2
𝑠𝑑𝑃𝑠

)𝐿
, 𝑘 = 𝐿,

(19)
where 𝑔𝑘(⋅) are specified in (12), and

𝑏𝑘(𝑡) ≜
∫ 𝑡

0

𝑔𝑘(𝑥)𝑞
′
𝐿−𝑘(𝑡− 𝑥)d𝑥, (20)
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in which 𝑞1(𝑡) = (2𝑡− 1)2 and for any 2 ≤ 𝑛 ≤ 𝐿− 1, 𝑞𝑛(𝑡)
is given by

𝑞𝑛(𝑡) = (−2ln2)n−1
∑

𝛼1,⋅⋅⋅ ,𝛼𝑛−1

∈{0,1}

(−1)𝛼1+⋅⋅⋅+𝛼n−12(1+𝛼n−1)t

× {𝐹𝑛−1(1−𝛼1, 𝛼1−𝛼2, ⋅ ⋅ ⋅ , 𝛼𝑛−2−𝛼𝑛−1; 𝑡)

− 2𝐹𝑛−1(−𝛼1, 𝛼1−𝛼2, ⋅ ⋅ ⋅ , 𝛼𝑛−2−𝛼𝑛−1; 𝑡)

+ 𝐹𝑛−1(−1−𝛼1, 𝛼1−𝛼2, ⋅ ⋅ ⋅ , 𝛼𝑛−2−𝛼𝑛−1; 𝑡)
}
.

(21)

The function 𝐹𝑛−1( ⋅ ; 𝑡) is specified in Lemma 2.

𝑃𝑟𝑜𝑜𝑓 : When the relay cooperates with the source by
jointly sending a message block via the Alamouti scheme, the
mutual information of the cooperative channels in the 𝑚-th
ARQ round is given by [23]

𝐼𝑠𝑟𝑑,𝑚 = log2

(
1 +

𝑃𝑠
𝒩0

∣ℎ𝑠𝑑,𝑚∣2 + 𝑃𝑟
𝒩0

∣ℎ𝑟𝑑,𝑚∣2
)
. (22)

Thus, with 𝐿 ARQ rounds, the total mutual information is

𝐼𝑡𝑜𝑡𝑑,𝑇𝑟=𝑘 =

⎧⎨
⎩
∑𝑘

𝑚=1 𝐼𝑠𝑑,𝑚 +
∑𝐿

𝑚=𝑘+1 𝐼𝑠𝑟𝑑,𝑚, 1 ≤ 𝑘 < 𝐿;

∑𝐿
𝑚=1 𝐼𝑠𝑑,𝑚, 𝑘 = 𝐿.

(23)
The above mutual information is based on the assumption
that the channels change independently over each ARQ
(re)transmission round, so the mutual information of fading
channels can be viewed as a sum of independent random
variables. We also note that when 𝑇𝑟 = 𝐿, the relay has
no chance to cooperate since the source starts sending a new
packet.

The conditional outage probability 𝑃 𝑜𝑢𝑡
𝑇𝑟=𝑘

can be evaluated
as

𝑃 𝑜𝑢𝑡
𝑇𝑟=𝑘 = Pr

[
𝐼𝑡𝑜𝑡𝑑,𝑇𝑟=𝑘 < 𝑅

]
. (24)

Note that, when 𝑇𝑟 = 𝐿, the relay has no chance to cooperate
regardless of whether the relay decodes correctly at the 𝐿-
th round or not. Thus, in this case, the conditional outage
probability 𝑃 𝑜𝑢𝑡

𝑇𝑟=𝐿
is reduced to the direct ARQ scenario and

it is given by

𝑃 𝑜𝑢𝑡
𝑇𝑟=𝐿 = Pr

[
𝐼𝑡𝑜𝑡𝑑,𝑇𝑟=𝐿 < 𝑅

] ≈ 𝑔𝐿(𝑅)

( 𝒩0

𝜎2
𝑠𝑑𝑃𝑠

)𝐿
. (25)

In the following, we calculate the conditional outage proba-
bility (24) for any 𝑇𝑟 = 𝑘, 𝑘 = 1, 2, ..., 𝐿− 1. For simplicity
in presentation, we introduce the following notation. Let

𝑣𝑚=

{
log2

(
1 + 𝑠1∣ℎ𝑠𝑑,𝑚∣2) , 1 ≤ 𝑚 ≤ 𝑘;

log2
(
1 + 𝑠1∣ℎ𝑠𝑑,𝑚∣2 + 𝑠2∣ℎ𝑟𝑑,𝑚∣2), 𝑘+1 ≤ 𝑚 ≤ 𝐿,

(26)
where 𝑠1 = 𝑃𝑠/𝒩0 and 𝑠2 = 𝑃𝑟/𝒩0. Then, the total mutual
information can be written as

𝐼𝑡𝑜𝑡𝑑,𝑇𝑟=𝑘 =

𝐿∑
𝑚=1

𝑣𝑚. (27)

We note that for any 1 ≤ 𝑚 ≤ 𝑘, ∣ℎ𝑠𝑑,𝑚∣2 is an exponential
random variable with parameter 𝜎−2

𝑠𝑑 . Thus,

lim
𝑠1→∞ 𝑠1 ⋅ Pr [𝑣𝑚 < 𝑡] = lim

𝑠1→∞ 𝑠1 ⋅ Pr

[
∣ℎ𝑠𝑑,𝑚∣2 < 2𝑡 − 1

𝑠1

]
=

1

𝜎2
𝑠𝑑

(2𝑡 − 1), 𝑚 = 1, 2 ⋅ ⋅ ⋅ , 𝑘.
(28)

Since 𝑣𝑚, 1 ≤ 𝑚 ≤ 𝑘, are independent random variables, by
applying Lemma 1 with 𝑀 = 1 recursively, we have

lim
𝑠1→∞ 𝑠𝑘1 ⋅ Pr

[
𝑘∑

𝑚=1

𝑣𝑚 < 𝑡

]
=
( 1

𝜎2
𝑠𝑑

)𝑘
𝑔𝑘(𝑡), (29)

where 𝑔𝑘(𝑡) is given in (12). For any 𝑚, 𝑘 + 1 ≤ 𝑚 ≤ 𝐿,
𝑣𝑚 involves the sum of two independent exponential random
variables ∣ℎ𝑠𝑑,𝑚∣2 and ∣ℎ𝑟𝑑,𝑚∣2 with parameters 𝜎−2

𝑠𝑑 and 𝜎−2
𝑟𝑑 ,

respectively, and the distribution of 𝑣𝑚 can be specified as

Pr [𝑣𝑚 < 𝑡] = Pr
[
𝑠1∣ℎ𝑠𝑑,𝑚∣2 + 𝑠2∣ℎ𝑟𝑑,𝑚∣2 < 2𝑡 − 1

]

=

⎧⎨
⎩

1−
(
1 + 1

𝜎2
𝑠𝑑

2𝑡−1
𝑠1

)
exp

(
− 1

𝜎2
𝑠𝑑

2𝑡−1
𝑠1

)
, if 𝑠1

𝜎2
𝑟𝑑

= 𝑠2
𝜎2
𝑠𝑑
;

1− 𝑠1𝜎
2
𝑠𝑑

𝑠1𝜎2
𝑠𝑑−𝑠2𝜎2

𝑟𝑑
exp

(
− 1

𝜎2
𝑠𝑑

2𝑡−1
𝑠1

)
− 𝑠2𝜎

2
𝑟𝑑

𝑠2𝜎2
𝑟𝑑−𝑠1𝜎2

𝑠𝑑
exp

(
− 1

𝜎2
𝑟𝑑

2𝑡−1
𝑠2

)
, if 𝑠1

𝜎2
𝑟𝑑

∕= 𝑠2
𝜎2
𝑠𝑑
,

(30)

for any 𝑚 = 𝑘 + 1, ..., 𝐿. Thus, for any 𝑚 = 𝑘+ 1, ..., 𝐿, we
have

lim
𝑠𝑖→∞
1≤𝑖≤2

𝑠1𝑠2 ⋅ Pr [𝑣𝑚 < 𝑡] =
1

2𝜎2
𝑠𝑑𝜎

2
𝑟𝑑

(2𝑡 − 1)2. (31)

Let 𝑞0(𝑡) = 1 and 𝑝(𝑡) = (2𝑡−1)2, then 𝑝′(𝑡) = 2(22𝑡−2𝑡)ln2.
Since 𝑣𝑚, 𝑘 + 1 ≤ 𝑚 ≤ 𝐿, are independent to each other, by
applying Lemma 1 with 𝑀 = 2 recursively, we can show that
for any 𝑛 = 1, 2, ..., 𝐿− 𝑘,

lim
𝑠𝑖→∞
1≤𝑖≤2

(𝑠1𝑠2)
𝑛 ⋅ Pr

[
𝑘+𝑛∑

𝑚=𝑘+1

𝑣𝑚 < 𝑡

]
=

(
1

2𝜎2
𝑠𝑑𝜎

2
𝑟𝑑

)𝑛
𝑞𝑛(𝑡),

(32)
in which

𝑞𝑛(𝑡) =

∫ 𝑡

0

𝑞𝑛−1(𝑥)𝑝
′(𝑡− 𝑥)d𝑥, 𝑛 = 1, 2, ..., 𝐿− 𝑘. (33)

We can see that when 𝑛 = 1, 𝑞1(𝑡) = (2𝑡−1)2. But for larger
𝑛, the calculation of 𝑞𝑛(𝑡) is involved. Based on Lemma 2, a
closed-form expression for 𝑞𝑛(𝑡) can be obtained as follows:

𝑞𝑛(𝑡) =

∫ 𝑡

0

∫ 𝑥𝑛−1

0

⋅ ⋅ ⋅
∫ 𝑥2

0

𝑞1(𝑥1)𝑝
′(𝑥2 − 𝑥1)𝑝

′(𝑥3 − 𝑥2) ⋅ ⋅ ⋅
× 𝑝′(𝑥𝑛−1 − 𝑥𝑛−2)𝑝

′(𝑡− 𝑥𝑛−1)d𝑥1d𝑥2 ⋅ ⋅ ⋅ d𝑥𝑛−1

=

∫ 𝑡

0

∫ 𝑥𝑛−1

0

⋅ ⋅ ⋅
∫ 𝑥2

0

(2𝑥1 − 1)2(2ln2)𝑛−1
𝑛−2∏
𝑚=1

(
2𝑥𝑚+1−𝑥𝑚 − 1

)
× (2𝑡−𝑥𝑛−1 − 1)2𝑡−𝑥1d𝑥1d𝑥2 ⋅ ⋅ ⋅ d𝑥𝑛−1

= (−2ln2)𝑛−1
∑

𝛼1,...,𝛼𝑛−1

∈{0,1}

(−1)𝛼1+⋅⋅⋅+𝛼𝑛−12(1+𝛼𝑛−1)𝑡

×
∫ 𝑡

0

∫ 𝑥𝑛−1

0

⋅ ⋅ ⋅
∫ 𝑥2

0

(2𝑥1 − 1)2 ⋅ 2−𝛼1𝑥1
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×
𝑛−1∏
𝑚=2

2(𝛼𝑚−1−𝛼𝑚)𝑥𝑚d𝑥1d𝑥2 ⋅ ⋅ ⋅ d𝑥𝑛−1

= (−2ln2)𝑛−1
∑

𝛼1,...,𝛼𝑛−1

∈{0,1}

(−1)𝛼1+⋅⋅⋅+𝛼𝑛−12(1+𝛼𝑛−1)𝑡

× {𝐹𝑛−1(1− 𝛼1, 𝛽2, ..., 𝛽𝑛−1; 𝑡)

− 2𝐹𝑛−1(−𝛼1, 𝛽2, ..., 𝛽𝑛−1; 𝑡)

+ 𝐹𝑛−1(−1− 𝛼1, 𝛽2, ..., 𝛽𝑛−1; 𝑡)
}
, (34)

where 𝛽2 = 𝛼1−𝛼2, 𝛽3 = 𝛼2−𝛼3, ..., 𝛽𝑛−1 = 𝛼𝑛−2−𝛼𝑛−1,
and 𝐹𝑛−1( ⋅ ; 𝑡) is defined in (6) (a closed-form expression for
𝐹𝑛−1( ⋅ ; 𝑡) is given in Lemma 2). We note that in the case
where 𝛽𝑖 is zero for some 𝑖, the non-zero condition in Lemma
2 is not satisfied. In such case, we may evaluate 𝐹𝑛−1( ⋅ ; 𝑡) by
applying Lemma 2 with 𝛽𝑖 = 𝜀𝑖 where 𝜀𝑖 is sufficiently small
(i.e. 𝜀𝑖 → 0) (Since the function 𝐹𝑛(𝛽1, ..., 𝛽𝑛; 𝑡) defined in
(6) is continuous in terms of 𝛽𝑖, 2 ≤ 𝑖 ≤ 𝑛 − 1, so is the
closed-form expression in Lemma 2).

According to the result in (32) with 𝑛 = 𝐿− 𝑘, we have

lim
𝑠𝑖→∞
1≤𝑖≤2

(𝑠1𝑠2)
𝐿−𝑘 ⋅Pr

[
𝐿∑

𝑚=𝑘+1

𝑣𝑚 < 𝑡

]
=

(
1

2𝜎2
𝑠𝑑𝜎

2
𝑟𝑑

)𝐿−𝑘
𝑞𝐿−𝑘(𝑡),

(35)
where 𝑞𝐿−𝑘(𝑡) can be calculated specifically based on (34).
Combining (29) and (35), and applying Lemma 1, we obtain

lim
𝑠𝑖→∞
1≤𝑖≤2

𝑠𝐿1 𝑠
𝐿−𝑘
2 ⋅ Pr

[ 𝑘∑
𝑚=1

𝐼𝑠𝑑,𝑚 +
𝐿∑

𝑚=𝑘+1

𝐼𝑠𝑟𝑑,𝑚 < 𝑅

]

= 𝑏𝑘(𝑅)

(
1

𝜎2
𝑠𝑑

)𝐿(
1

2𝜎2
𝑟𝑑

)𝐿−𝑘
, (36)

where

𝑏𝑘(𝑡) =

∫ 𝑡

0

𝑔𝑘(𝑥)𝑞
′
𝐿−𝑘(𝑡− 𝑥)d𝑥. (37)

Since 𝑠1 = 𝑃𝑠/𝒩0 and 𝑠2 = 𝑃𝑟/𝒩0, so for any 𝑇𝑟 = 𝑘,
𝑘 = 1, 2, ..., 𝐿 − 1, the conditional probability (24) can be
asymptotically approximated as

𝑃 𝑜𝑢𝑡
𝑇𝑟=𝑘 = Pr

[ 𝑘∑
𝑚=1

𝐼𝑠𝑑,𝑚 +

𝐿∑
𝑚=𝑘+1

𝐼𝑠𝑟𝑑,𝑚 < 𝑅

]

≈ 𝑏𝑘(𝑅)

2𝐿−𝑘

( 𝒩0

𝜎2
𝑠𝑑𝑃𝑠

)𝐿 ( 𝒩0

𝜎2
𝑟𝑑𝑃𝑟

)𝐿−𝑘
, (38)

which completes the proof of the theorem. □
Finally, based on the probability Pr [𝑇𝑟 = 𝑘] in (18) and the

conditional outage probability 𝑃 𝑜𝑢𝑡
𝑇𝑟=𝑘

in Theorem 1, we can
obtain the outage probability for the DF cooperative ARQ
relay scheme as follows

𝑃 𝑜𝑢𝑡,𝐿 ≈
𝐿−1∑
𝑘=1

𝑏𝑘(𝑅)

2𝐿−𝑘

[
𝑔𝑘−1(𝑅)− 𝑔𝑘(𝑅)

𝒩0

𝜎2
𝑠𝑟𝑃𝑠

]

×
( 𝒩0

𝜎2
𝑠𝑑𝑃𝑠

)𝐿( 𝒩0

𝜎2
𝑟𝑑𝑃𝑟

)𝐿−𝑘( 𝒩0

𝜎2
𝑠𝑟𝑃𝑠

)𝑘−1

+ 𝑔𝐿(𝑅)𝑔𝐿−1(𝑅)

( 𝒩0

𝜎2
𝑠𝑑𝑃𝑠

)𝐿( 𝒩0

𝜎2
𝑠𝑟𝑃𝑠

)𝐿−1

, (39)

where 𝑔𝑘(𝑅) and 𝑏𝑘(𝑅) are specified in (12) and (37),
respectively. Furthermore, we note that the term 𝑔𝑘(𝑅) 𝒩0

𝜎2
𝑠𝑟𝑃𝑠

is much smaller than 𝑔𝑘−1(𝑅) at high SNR 𝑃𝑠

𝒩0
, which can

be ignored in the outage probability, so the asymptotic outage
probability in (39) can be further simplified as

𝑃 𝑜𝑢𝑡,𝐿 ≈
𝐿∑

𝑘=1

𝑏𝑘(𝑅)𝑔𝑘−1(𝑅)

2𝐿−𝑘

×
( 𝒩0

𝜎2
𝑠𝑑𝑃𝑠

)𝐿( 𝒩0

𝜎2
𝑟𝑑𝑃𝑟

)𝐿−𝑘( 𝒩0

𝜎2
𝑠𝑟𝑃𝑠

)𝑘−1

, (40)

where 𝑏𝐿(𝑅) = 𝑔𝐿(𝑅). Simulation studies presented later in
this paper will illustrate the tightness of the outage probability
at high SNR.

Based on the above asymptotic outage probability, we

observe that the term
(

𝒩0

𝜎2
𝑠𝑑𝑃𝑠

)𝐿
in (40) contributes a diversity

order 𝐿 in the asymptotic outage performance, which is due
to the fast fading or block fading nature of the channels. The

term
(

𝒩0

𝜎2
𝑟𝑑𝑃𝑟

)𝐿−𝑘( 𝒩0

𝜎2
𝑠𝑟𝑃𝑠

)𝑘−1

contributes an overall diversity

order (𝐿−𝑘)+(𝑘−1) = 𝐿−1 which is due to the cooperative
relaying. Thus, the asymptotic outage probability of the DF
cooperative ARQ relay scheme has an overall diversity order
2𝐿 − 1. In the case of the equal power allocation, i.e.
𝑃𝑠 = 𝑃𝑟 = 𝑃 , the contribution of the diversity order in the
outage probability is more evident. We recall that the diversity
order of the direct ARQ transmission scheme is only 𝐿, which
is due to the fast fading or block fading nature of the channels,
and it is much smaller than that of the DF cooperative ARQ
relay scheme.

IV. OPTIMUM POWER ALLOCATION FOR THE DF
COOPERATIVE ARQ RELAY SCHEME

In this section, we derive the asymptotic optimum power
allocation strategy for the DF cooperative ARQ relay scheme
based on the approximation of the outage probability that was
presented in the previous section. Without loss of generality,
we denote the total transmission power as 𝑃𝑠 + 𝑃𝑟 ≜ 2𝑃 ,
where 𝑃𝑠 and 𝑃𝑟 are the power used by the source and
the relay, respectively. Then, for any given total transmission
power 2𝑃 , we try to determine optimum power 𝑃𝑠 and 𝑃𝑟 in
order to minimize the asymptotic outage probability.

Let 𝜆 denote the ratio of the source power 𝑃𝑠 to the total
transmission power, i.e. 𝜆 = 𝑃𝑠

2𝑃 . Then 0 ≤ 𝜆 ≤ 1 and
𝑃𝑟 = (1 − 𝜆)2𝑃 . The asymptotic outage probability of the
DF cooperative ARQ relay scheme can be written as

𝑃 𝑜𝑢𝑡,𝐿 ≈ 𝜎2
𝑠𝑟

(2𝜎2
𝑠𝑑𝜎

2
𝑟𝑑)

𝐿

(𝒩0

2𝑃

)2𝐿−1 𝐿∑
𝑘=1

𝑏𝑘(𝑅)𝑔𝑘−1(𝑅)

×
(
2𝜎2

𝑟𝑑

𝜎2
𝑠𝑟

)𝑘
1

𝜆𝐿+𝑘−1(1 − 𝜆)𝐿−𝑘 . (41)

We try to find the optimum power ratio 𝜆 (0 ≤ 𝜆 ≤ 1)
such that the asymptotic outage probability is minimized. Let

𝐴𝑘(𝑅) ≜ 𝑏𝑘(𝑅)𝑔𝑘−1(𝑅)
(

2𝜎2
𝑟𝑑

𝜎2
𝑠𝑟

)𝑘
and

𝐺(𝜆) ≜
𝐿∑

𝑘=1

𝐴𝑘(𝑅)

𝜆𝐿+𝑘−1(1− 𝜆)𝐿−𝑘 . (42)
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Then the optimization problem can be formulated as follows

min
𝜆

𝐺(𝜆)

𝑠.𝑡. 0 < 𝜆 < 1. (43)

The optimum value of 𝜆 (i.e. 𝜆𝑜𝑝𝑡) satisfies the following
equation

∂𝐺(𝜆)

∂𝜆
=

𝐿∑
𝑘=1

𝐴𝑘(𝑅)

{
−(𝐿+ 𝑘 − 1)

𝜆𝐿+𝑘(1− 𝜆)𝐿−𝑘

+
𝐿− 𝑘

𝜆𝐿+𝑘−1(1− 𝜆)𝐿−𝑘+1

}
= 0, (44)

or equivalently

𝐿∑
𝑘=1

𝐴𝑘(𝑅)

{
− (𝐿+ 𝑘 − 1)

(
1− 𝜆

𝜆

)𝑘

+ (𝐿− 𝑘)

(
1− 𝜆

𝜆

)𝑘−1
}

= 0. (45)

Equation (45) can be easily solved by the Newton method.
Looking closely at equation (45), we observe the followings.
Since 𝐴𝑘(𝑅) is positive, then 1−𝜆

𝜆 must be less than 1,
otherwise the left-hand side of (45) is negative. It is thus
implied that 𝜆 > 1

2 , i.e. 𝑃𝑠 > 𝑃 and 𝑃𝑟 < 𝑃 which
means that we should allocate more power at the source and
less power at the relay. It also shows that the equal power
allocation scheme that assigns equal power to the source
and the relay is not optimum in general. On the other hand,
for any given transmission rate 𝑅, the parameters 𝐴𝑘(𝑅) in
(45) depend only on 𝜎2

𝑠𝑟 and 𝜎2
𝑟𝑑 which are the variance

values of the source-relay and relay-destination channel links,
respectively. Thus, the asymptotic optimum power ratio 𝜆𝑜𝑝𝑡
depends only on the the variance of the source-relay and relay-
destination channels, and not on the source-destination channel
link. A similar observation was reported in [7] where the
optimum power allocation between the source and the relay
was determined based on the analysis of the symbol-error-rate
performance.

As an example, we study the case where 𝐿 = 2. In this
case, equation (45) is reduced to

3𝐴2(𝑅)

(
1− 𝜆

𝜆

)2

+ 2𝐴1(𝑅)

(
1− 𝜆

𝜆

)
−𝐴1(𝑅) = 0, (46)

so the optimum power ratio is

𝜆 =
1 +

√
1 + 3𝐴2(𝑅)

𝐴1(𝑅)

2 +
√
1 + 3𝐴2(𝑅)

𝐴1(𝑅)

. (47)

Thus the corresponding optimum power allocation at the
source and at the relay is given by

𝑃𝑠 =
1 +

√
1 + 3𝐴2(𝑅)

𝐴1(𝑅)

1 + 1
2

√
1 + 3𝐴2(𝑅)

𝐴1(𝑅)

𝑃, (48)

𝑃𝑟 =
1

1 + 1
2

√
1 + 3𝐴2(𝑅)

𝐴1(𝑅)

𝑃. (49)
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Fig. 2. Outage probability of the direct and DF cooperative ARQ schemes
(L=2).

In (48) and (49), 𝐴2(𝑅)
𝐴1(𝑅) =

2 𝑏2(𝑅)𝑔1(𝑅)
𝑏1(𝑅)

𝜎2
𝑟𝑑

𝜎2
𝑠𝑟

. Thus, the optimum
power allocation dependents only on the ratio of the variance
of the source-relay channel and the variance of the relay-
destination channel, which is consistent with our observation
that we based on equation (45). Also, from (48) and (49),
we can see that 𝑃 < 𝑃𝑠 < 2𝑃 and 0 < 𝑃𝑟 < 𝑃 , i.e. we
should allocate more power at the source and less power at the
relay to optimize the overall performance at the destination.
Furthermore, (48) and (49) imply that if the relay is located
close to the source, i.e. 𝜎2

𝑠𝑟 ≫ 𝜎2
𝑟𝑑, 𝑃𝑠 goes to 4

3𝑃 and 𝑃𝑟
goes to 2

3𝑃 . On the contrary, if the relay is located close to
the destination, i.e. 𝜎2

𝑠𝑟 ≪ 𝜎2
𝑟𝑑, 𝑃𝑠 goes to 2𝑃 and 𝑃𝑟 goes to

0, which means that, in this case we should allocate most of
the power (2𝑃 ) at the source. The latter is reasonable since
the cooperative role of the relay is minor in this case.

V. SIMULATION RESULTS

In this section, we present numerical and simulation studies
that compare the performance of the DF cooperative ARQ
scheme with that of the direct ARQ scheme. In all studies,
the variance of the channel ℎ𝑖𝑗 {(𝑖, 𝑗) ∈ (𝑠, 𝑑), (𝑠, 𝑟), (𝑟, 𝑑)}
is assumed to be 𝜎2

𝑖𝑗 = 𝑑−𝜇𝑖𝑗 , where 𝑑𝑖𝑗 is the distance between
two nodes and 𝜇 is the path loss exponent which is assumed
to be 𝜇 = 3 in a typical fading environment. We assume that
the source-destination distance is 𝑑𝑠𝑑 = 10 m and the relay is
located in the midpoint between the source and the destination.
We consider a target transmission rate of 𝑅 = 2 bits/s/Hz.

Figs. 2, 3 and 4 illustrate the performance curves when
the maximum number of ARQ (re)transmission rounds is
𝐿 = 2, 3 and 4, respectively. In these figures, equal power
allocation is assumed, i.e. 𝑃𝑠 = 𝑃𝑟 = 𝑃 . All figures show
that the proposed theoretical approximation of the outage
probability of the DF cooperative ARQ relay scheme is tight
for high SNR values while it is less tight for low SNR values.
For example, in Fig. 2 (𝐿 = 2), the analytical approximation
curve is almost indistinguishable from the simulated curve
for all outage performance levels below 10−3. Moreover,
the larger the number of ARQ (re)transmission rounds, the
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Fig. 3. Outage probability of the direct and DF cooperative ARQ schemes
(L=3).

higher the diversity order of the DF cooperative ARQ relay
scheme. This observation is consistent with the theoretical
result that the diversity order of the DF cooperative ARQ
relay scheme increases as the number of ARQ (re)transmission
rounds increases.

All Figs. 2–4 show that the DF cooperative ARQ relay
scheme significantly outperforms the direct ARQ scheme. At
an outage performance of 10−4, the performance of the DF
cooperative ARQ relay scheme is about 8dB better than that
of the direct ARQ scheme. For the same maximum number
of (re)transmission rounds 𝐿, the DF cooperative ARQ relay
scheme exhibits a higher diversity order than the direct ARQ
scheme which is consistent with our theoretical developments,
i.e. the DF cooperative ARQ relay scheme has diversity order
2𝐿−1, while the direct ARQ scheme has diversity order only
𝐿.

In Fig. 5, we plot the power allocation optimization function
𝐺(𝜆) in terms of 𝜆 (0 ≤ 𝜆 ≤ 1) for the cases where 𝐿 = 2, 3
and 4, respectively. We assume that the quality of the source-
relay link is the same as that of the relay-destination link,
i.e. 𝜎2

𝑠𝑟 = 𝜎2
𝑟𝑑. We observe that the optimum power ratio

𝜆 is about 0.8 for the three cases. More precisely, from the
numerical results, the optimum power ratios are 𝜆 = 0.8203,
𝜆 = 0.7969 and 𝜆 = 0.7838 for 𝐿 = 2, 3 and 4, respectively.
It appears that the optimum power ratio decreases gradually
when the maximum number of (re)transmission rounds is
increased. Furthermore, the optimum power ratio is much
larger than 1/2 which is consistent with our analysis that we
should allocate more power at the source and less at the relay.

In Figs. 6–8, we compare the performance of the DF coop-
erative ARQ relay scheme with optimum power allocation and
with equal power allocation for 𝐿 = 2, 3 and 4, respectively.
Both simulation and numerical approximation curves are in-
cluded. In Fig. 6 (𝐿 = 2), the optimum power allocated at the
source and the relay is set to the numerical values obtained
from Fig. 5, i.e. 𝑃𝑠/2𝑃 = 0.8203 and 𝑃𝑟/2𝑃 = 0.1797,
respectively. We observe that the performance of the DF coop-
erative ARQ relay scheme with the optimum power allocation
is about 1.5dB better than that of the scheme with the equal
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Fig. 4. Outage probability of the direct and DF cooperative ARQ schemes
(L=4).

power allocation. In Fig. 7 (𝐿 = 3), the optimum power
allocation is 𝑃𝑠/2𝑃 = 0.7969 and 𝑃𝑟/2𝑃 = 0.2031, and
the corresponding curve shows a performance improvement of
1.25dB compared to the equal power allocation case. In Fig. 8
(𝐿 = 4), the optimum power allocation is 𝑃𝑠/2𝑃 = 0.7838
and 𝑃𝑟/2𝑃 = 0.2162. We see that the performance curve of
the DF cooperative ARQ relay scheme with optimum power
allocation also exhibits performance gains of about 1.25dB
compared to the performance of the equal power allocation
scheme.

VI. CONCLUSION

In this paper, we developed, for the first time, a closed-
form asymptotically tight (as SNR → ∞) approximation of
the outage probability for the DF cooperative ARQ relay
scheme under fast fading (packet-rate fading or block fading)
conditions, in which each relay forwards Alamouti-based
retransmission signals. The closed-from expression provides
significant insight into the merits of DF cooperative ARQ
relaying relative to the direct ARQ scheme in fast fading
scenarios and shows that the cooperative scheme achieves
diversity order equal to 2𝐿 − 1 while the diversity order of
the direct scheme is only 𝐿. Simulation and numerical studies
illustrated that the closed-form approximation of the outage
probability is tight at high SNR. Based on the asymptotically
tight approximation of the outage probability, we were able to
determine the optimum power allocation strategy for the DF
cooperative ARQ relay scheme. It turns out that equal power
allocation is not optimum in general and that the optimum
power allocation strategy depends on the link quality of the
channels related to the relay. It is also clear that we should
allocate more power at the source and less at the relay. Further
numerical and simulation studies illustrated the performance
gains of the DF cooperative ARQ relay scheme with optimum
power allocation relative to the equal power allocation scheme.
We note that the outage probability developed in this paper
may be used to analyze the delay and throughput performance
of the DF cooperative ARQ relay scheme.
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Fig. 6. Outage probability of the DF cooperative ARQ scheme with equal
and optimum power allocations (L=2).

APPENDIX A
PROOF OF LEMMA 1

For any partition 𝑼 of the interval [0, 𝑡], denoted as 𝑼 =
{𝑢0, 𝑢1, ..., 𝑢𝐽} with 𝑢0 = 0 and 𝑢𝐽 = 𝑡, we can obtain upper
and lower bounds of the event {u𝑠1,...,𝑠𝑀 + v𝑠1,...,𝑠𝑀 < 𝑡} as
follows:

{u𝑠1,...,𝑠𝑀 + v𝑠1,...,𝑠𝑀 < 𝑡} ⊆
𝐽∪
𝑗=1

{𝑢𝑗−1 ≤ u𝑠1,...,𝑠𝑀 < 𝑢𝑗} ∩ {v𝑠1,...,𝑠𝑀 < 𝑡− 𝑢𝑗−1},

(50)

{u𝑠1,...,𝑠𝑀 + v𝑠1,...,𝑠𝑀 < 𝑡} ⊇
𝐽∪

𝑗=1

{𝑢𝑗−1 ≤ u𝑠1,...,𝑠𝑀 < 𝑢𝑗} ∩ {v𝑠1,...,𝑠𝑀 < 𝑡− 𝑢𝑗}.

(51)
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Fig. 7. Outage probability of the DF cooperative ARQ scheme with equal
and optimum power allocations (L=3).
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Fig. 8. Outage probability of the DF cooperative ARQ scheme with equal
and optimum power allocations (L=4).

The upper and lower bounds in (50) and (51), respectively,
are considered as a union of rectangles between 𝑢𝑗−1 and
𝑢𝑗 for 0 ≤ 𝑗 ≤ 𝐽 . First, let us focus on the upper bound.
The probability of the subset {𝑢𝑗−1 ≤ u𝑠1,...,𝑠𝑀 < 𝑢𝑗} ∩
{v𝑠1,...,𝑠𝑀 < 𝑡− 𝑢𝑗−1} can be calculated as

Pr [𝑢𝑗−1 ≤ u𝑠1,...,𝑠𝑀 < 𝑢𝑖, v𝑠1,...,𝑠𝑀 < 𝑡− 𝑢𝑗−1]

= {Pr [u𝑠1,...,𝑠𝑀 < 𝑢𝑗]− Pr [u𝑠1,...,𝑠𝑀 < 𝑢𝑗−1]}
× Pr [v𝑠1,...,𝑠𝑀 < 𝑡− 𝑢𝑗−1] . (52)

Then,

lim
𝑠𝑖→∞
1≤𝑖≤𝑀

𝑀∏
𝑖=1

𝑠𝑑1+𝑑2𝑖 ⋅ Pr
[
𝑢𝑗−1 ≤ u𝑠1,...,𝑠𝑀 < 𝑢𝑗 ,

v𝑠1,...,𝑠𝑀 < 𝑡− 𝑢𝑗−1

]
= 𝑎𝑏 ⋅ {𝑓(𝑢𝑗)− 𝑓(𝑢𝑗−1)}𝑔(𝑡− 𝑢𝑗−1), (53)
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and for any monotonically increasing functions 𝑓(𝑡) and 𝑔(𝑡),

sup
𝑼

lim
𝑠𝑖→∞
1≤𝑖≤𝑀

𝑀∏
𝑖=1

𝑠𝑑1+𝑑2𝑖 ⋅ Pr [u𝑠1,...,𝑠𝑀 + v𝑠1,...,𝑠𝑀 < 𝑡]

≤ 𝑎𝑏 ⋅
𝐽∑
𝑗=1

𝑔(𝑡− 𝑢𝑗−1){𝑓(𝑢𝑗)− 𝑓(𝑢𝑗−1)}. (54)

Similarly,

inf𝑼 lim
𝑠𝑖→∞
1≤𝑖≤𝑀

𝑀∏
𝑖=1

𝑠𝑑1+𝑑2𝑖 ⋅ Pr [u𝑠1,...,𝑠𝑀 + v𝑠1,...,𝑠𝑀 < 𝑡]

≥ 𝑎𝑏 ⋅
𝐿∑
𝑗=1

𝑔(𝑡− 𝑢𝑗){𝑓(𝑢𝑗)− 𝑓(𝑢𝑗−1)}. (55)

The above upper and lower bounds are good for any partition
𝑼 = {𝑢0, 𝑢1, ..., 𝑢𝐽} over the interval [0, 𝑡]. Since 𝑓 ′(𝑡) is
integrable, then, for 𝐽 → ∞, the sum terms in (54) and (55)
converge to the same integral

∫ 𝑡
0 𝑔(𝑥)𝑓

′(𝑡 − 𝑥)d𝑥. Therefore
we have the result in (4). □

APPENDIX B
PROOF OF LEMMA 2

We use induction to prove the result for any integer 𝑛 ≥ 2.
When 𝑛 = 2, it is easy to see that

𝐹2(𝛽1, 𝛽2; 𝑡) =

∫ 𝑡

0

∫ 𝑥2

0

2𝛽1𝑥1+𝛽2𝑥2d𝑥1d𝑥2

=
(ln2)−1

𝛽1

{
(ln2)−1

𝛽1 + 𝛽2

(
2(𝛽1+𝛽2)𝑡 − 1

)
− (ln2)−1

𝛽2

(
2𝛽2𝑡 − 1

)}

=
∑

𝛿1∈{0,1}

(−1)2+𝛿1(ln2)−2∏2
𝑚=1

[∑𝑚
𝑙=1 𝑖𝑚,𝑙(𝜹)𝛽𝑙

] (2[∑2
𝑙=1 𝑖2,𝑙(𝜹)𝛽𝑙]𝑡 − 1

)
,

(56)

i.e. the closed-form expression in (6) is valid for 𝑛 = 2. Next,
we assume that the result in (6) is good for 𝑛 = 𝑘, where 𝑘 is
any fixed integer greater or equal to 2. Then, for 𝑛 = 𝑘 + 1,

𝐹𝑘+1(𝛽1, ..., 𝛽𝑘+1; 𝑡)

=

∫ 𝑡

0

∫ 𝑥𝑘+1

0

⋅ ⋅ ⋅
∫ 𝑥2

0

2𝛽1𝑥1+𝛽2𝑥2+⋅⋅⋅+𝛽𝑘+1𝑥𝑘+1d𝑥1d𝑥2 ⋅ ⋅ ⋅ d𝑥𝑘+1

=

∫ 𝑡

0

∫ 𝑥𝑘+1

0

⋅ ⋅ ⋅
∫ 𝑥2

0

2𝛽1𝑥1+𝛽2𝑥2+⋅⋅⋅+𝛽𝑘𝑥𝑘 d𝑥1d𝑥2 ⋅ ⋅ ⋅ d𝑥𝑘︸ ︷︷ ︸
𝐹𝑘(𝛽1,...,𝛽𝑘;𝑥𝑘+1)

× 2𝛽𝑘+1𝑥𝑘+1 d𝑥𝑘+1

=

∫ 𝑡

0

𝐹𝑘(𝛽1, ..., 𝛽𝑘; 𝑥𝑘+1) 2
𝛽𝑘+1𝑥𝑘+1 d𝑥𝑘+1. (57)

According to the induction assumption, we have

𝐹𝑘(𝛽1, ..., 𝛽𝑘;𝑥𝑘+1)

=

∫ 𝑥𝑘+1

0

∫ 𝑥𝑘

0

⋅ ⋅ ⋅
∫ 𝑥2

0

2𝛽1𝑥1+𝛽2𝑥2+⋅⋅⋅+𝛽𝑘𝑥𝑘d𝑥1d𝑥2 ⋅ ⋅ ⋅ d𝑥𝑘

=
∑

𝛿1,...,𝛿𝑘−1

∈{0,1}

(−1)𝑘+𝛿1+⋅⋅⋅+𝛿𝑘−1(ln2)−𝑘∏𝑘
𝑚=1

[∑𝑚
𝑙=1 𝑖𝑚,𝑙(𝜹)𝛽𝑙

] (2[∑𝑘
𝑙=1 𝑖𝑘,𝑙(𝜹)𝛽𝑙]𝑥𝑘+1−1

)
.

(58)

Substituting (58) into (57), we obtain

𝐹𝑘+1(𝛽1, ..., 𝛽𝑘+1; 𝑡)

=
∑

𝛿1,...,𝛿𝑘−1

∈{0,1}

(−1)𝑘+𝛿1+⋅⋅⋅+𝛿𝑘−1(ln2)−𝑘∏𝑘
𝑚=1

[∑𝑚
𝑙=1 𝑖𝑚,𝑙(𝜹)𝛽𝑙

]
×
∫ 𝑡

0

(
2[

∑𝑘
𝑙=1 𝑖𝑘,𝑙(𝜹)𝛽𝑙+𝛽𝑘+1]𝑥𝑘+1 − 2𝛽𝑘+1𝑥𝑘+1

)
d𝑥𝑘+1

=
∑

𝛿1,...,𝛿𝑘−1

∈{0,1}

(−1)𝑘+𝛿1+⋅⋅⋅+𝛿𝑘−1(ln2)−(𝑘+1)∏𝑘
𝑚=1

[∑𝑚
𝑙=1 𝑖𝑚,𝑙(𝜹)𝛽𝑙

]⋅[∑𝑘
𝑙=1 𝑖𝑘,𝑙(𝜹)𝛽𝑙 + 𝛽𝑘+1

]
×
(
2[

∑𝑘
𝑙=1 𝑖𝑘,𝑙(𝜹)𝛽𝑙+𝛽𝑘+1]𝑡 − 1

)
−

∑
𝛿1,...,𝛿𝑘−1

∈{0,1}

(−1)𝑘+𝛿1+⋅⋅⋅+𝛿𝑘−1(ln2)−(𝑘+1)∏𝑘
𝑚=1

[∑𝑚
𝑙=1 𝑖𝑚,𝑙(𝜹)𝛽𝑙

]⋅𝛽𝑘+1

(
2𝛽𝑘+1𝑡 − 1

)

=
∑

𝛿1,...,𝛿𝑘
∈{0,1}

(−1)𝑘+1+𝛿1+⋅⋅⋅+𝛿𝑘(ln2)−(𝑘+1)∏𝑘+1
𝑚=1

[∑𝑚
𝑙=1 𝑖𝑚,𝑙(𝜹)𝛽𝑙

] (
2[

∑𝑘+1
𝑙=1 𝑖𝑘+1,𝑙(𝜹)𝛽𝑙]𝑡−1

)
,

(59)

where 𝛿𝑘 ∈ {0, 1}, 𝑖𝑘+1,𝑘+1(𝜹) = 1 and 𝑖𝑘+1,𝑙(𝜹) = 𝛿𝑘 ⋅
𝑖𝑘,𝑙(𝜹), 𝑙 = 1, 2, ..., 𝑘. Also, we have

𝑘+1∑
𝑙=1

𝑖𝑘+1,𝑙(𝜹)𝛽𝑙 =

{ ∑𝑘
𝑙=1 𝑖𝑘,𝑙(𝜹)𝛽𝑙 + 𝛽𝑘+1, if 𝛿𝑘 = 1;

𝛽𝑘+1, if 𝛿𝑘 = 0.

(60)

Therefore, the closed-form expression in (6) is valid for 𝑛 =
𝑘 + 1, which completes the proof. □
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