
Using Tactic-Based Learning (formerly Mentoring) to Accelerate Recovery of 
an Adaptive Learning System in a Changing Environment 

 
 

Alice Armstrong 
The George Washington University 
Department of Computer Science 

Washington, DC 
piffle@gwu.edu 

Peter Bock 
The George Washington University 
Department of Computer Science 

Washington, DC 
pbock@gwu.edu

 
 

Abstract 
 

Tactic-Based Learning (TBL), formerly referred to 
as mentoring, is a selection policy for statistical 
learning systems that has been initially tested with a 
Collective Learning Automaton that solves a simple, 
but representative, problem. To respond to an 
immature stimulus that does not yet have a high-
confidence response associated with it, TBL 
hypothesizes that selecting a response that has been 
designated as useful by a different, but nonetheless 
well-trained stimulus, is a better strategy than 
selecting a random response. TBL does not use any 
feature analysis in search of an appropriate response. 
Previous results [1] show that TBL significantly 
accelerates learning of a static problem, especially 
when several stimuli share the same response, i.e., 
when broad domain generalization is possible. This 
paper shows that TBL also increases the speed of 
recovery when the problem changes abruptly after the 
learning agent has mastered the initial state of the 
problem.  
 
1. Introduction 
 

In Collective Learning Systems (CLS), a 
Collective Learning Automaton (CLA) learns the 
appropriate response for each stimulus by selecting 
responses until one of them emerges as statistically 
optimal, guided by feedback from an evaluating 
Environment (Bock 1976). Generally, CLS theory 
ignores what has already been learned by other stimuli 
when making decisions about a new stimulus. Recently 
[1] it was shown that once some reliable knowledge is 
available for one stimulus, incorporating that 
knowledge into learning the responses to other stimuli, 
even if they are largely unrelated, can be very 
effective. Many psychologists agree that applying 
successful solutions for old problems to new and often 
unrelated problems is a useful learning strategy [9] 

[11] [3]. Although the experiments reported in this 
paper do not attempt to replicate human behavior at 
any level, biologically and psychologically inspired 
mechanisms and methods can often provide useful 
insights and hints for AI methods (Heckman, 2004). 

The research reported in this paper deals with a 
selection policy for CLAs, called Tactic-Based 
Learning (TBL), which accelerates learning by 
applying knowledge about one well-learned situation 
to another. Although many machine learning 
algorithms can achieve excellent results by identifying 
similar feature vectors (explicit domain 
generalization), they all require postulating a sensible 
and computable distance metric. For example, the k-
Nearest Neighbor algorithm [7] [8] computes similarity 
using the Euclidean distance between vectors in an 
ordered n-dimensional space. On the other hand, 
although case-based reasoning [12] allows feature 
vectors to be categorical, a distance metric of some 
kind must be postulated to identify similar cases.  

For many problem domains, it is not possible to 
postulate a meaningful distance metric. For example, in 
Natural Language Processing there is no direct way to 
compute the distance between the meanings of words, 
so other methods must be devised [10]. TBL, however, 
does not compare feature factors at all, and is thus 
applicable to a wide problem domain. 
 
2. A note about a change in terminology 
 

After attending the AIPR 2007 workshop itself, the 
authors have decided to incorporate the very useful 
feedback they received and make some changes to the 
terminology. The chart below gives the list of old 
terms specific to the selection policy and their 
corresponding new terms. Readers who are unfamiliar 
with mentoring/Tactic-Based Learning may skip this 
section. 

 



Figure 1: Algedonic cycle of a CLS 
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old term new term 

mentoring tactic-based learning  
mentor tactic 
unguided stimulant undirected stimulant 
student stimulant directed stimulant 
independent stimulant independent stimulant 
supporter stimulant supporter stimulant 
dependence threshold dependence threshold 
independence threshold independence threshold 
withdrawal threshold recantation threshold 
election threshold support threshold 
mentored CLA tactic-based CLA 
unmentored CLA standard CLA 
Table 1 old and new terms for the mentoring/tactic-
based learning technique 

 
3. Background 
 
3.1. Collective Learning Systems 
 

In a Collective Learning System (CLS) a 
Collective Learning Automaton (CLA) learns how to 
respond to stimuli appropriately using the algedonic 
cycle [2], as illustrated in Figure 1. The CLA is 
embedded in an Environment that sends a stream of 
stimuli to the CLA and periodically issues evaluations 
of the CLA’s responses to these stimuli. A stimulus is 
a vector of several features that describes some state of 
the Environment. The CLA uses a State Transition 

Matrix (STM) 
to store each 
unique stimuli 
that has been 
received, along 
with its 
occurrence 
count (sample 
size) and an 
estimate of the 
probability that 
each possible 
response is valid 

for this stimulus.  For each stimulus that is received, 
the CLA uses these probabilities to select a response, 
which is then sent to the Environment. These selection 
probabilities are updated based on periodic evaluations 
issued to the CLA by the Environment at the end of a 
stage, which is a sequence of responses by the CLA.  

For a given stimulus the Standard CLA (a CLA 
that does not use TBL) selects the response with the 
highest statistical confidence if the confidence is 
sufficiently high; otherwise, a response is selected at 
random. All responses are sent to the Environment, and 

at the end of each stage, the Environment evaluates 
their collective performance. This evaluation is issued 
to the CLA, where the compensation function 
converts the evaluation into an update. The update is 
applied to all the elements of the probability vectors in 
the STM that were used to generate the CLA’s 
responses since the last evaluation (the history of the 
stage) [4].   

The standard difference of two proportions is used 
to compute the statistical confidence of each response 
for every stimulus, which is called the selection 
confidence of a response.   

 
3.2. Tactic-Based Learning 
 

Tactic-based Learning is an algorithm that 
overrides the standard selection policy used by a 
Standard CLA. A Tactic-Based CLA follows the 
standard selection policy until one stimulus is 
sufficiently well trained to elect its primary response as 
a tactic. A stimulus supports a tactic when its selection 
confidence is very high. Stimuli that are using a tactic 
(directed stimuli) simply use this response, assuming 
it is better than a random response. However, each 
directed stimulus tracks the effectiveness of the tactic 
and uses it only as long as it remains effective (an 
average compensation ≥ 1). When a new tactic 
becomes available, all stimuli that do not yet have an 
effective tactic will try it.  
The lifecycle of a hypothetical stimulus in a Tactic-
Based CLA is described in Figure 2.  When there are 
no tactics in a CLA, all stimuli follow the standard 
selection policy and are called undirected stimuli. As 
soon as the first tactic appears, all undirected stimuli 
will investigate it. When a stimulus selects a tactic, it 
becomes a directed stimulus of that tactic. As long as a 
tactic remains effective for a directed stimulus, the 
directed stimulus will continue to use the tactic’s 
responses. However, if a tactic proves ineffective (a 
parameter of the algorithm), the directed stimulus 
drops this tactic and looks for another. If no other 
effective tactics are available, the stimulus reverts to 
the standard selection policy and becomes an 
undirected stimulus. After a directed stimulus has 
attained a specified selection confidence, it becomes an 
independent stimulus and reverts to the standard 
selection policy. Dropping the tactic allows the 
independent stimulus to explore its response range. 
Exploration is useful because it helps avoid settling in 
a local maximum. An independent stimulus will either 
lose confidence in its response and revert to being a 
directed stimulus, or will become confident enough to 
become a supporter of a tactic itself. An independent 
stimulus is allowed some latitude, and it will only 
revert to being a directed stimulus if its selection 
confidence falls below the dependence threshold.  



In the event that a supporter stimulus loses 
confidence in its response, the supporter stimulus 
recants. If the tactic no longer has any supporters, it 
will no longer be available for use, and any directed 
stimuli using it will become undirected stimuli.  
 
4. Objective & Solution Method 
 

The effectiveness of TBL has been shown in 
previous work [1] for static learning problems, that is, 
learning tasks that did not change over time. The 
research presented in this paper demonstrates that TBL 
can help a CLA recover from a change in the learning 
task faster than a Standard CLA. In order to observe 
the effectiveness of TBL to speed recovery, the 
following simple, but representative, problem was 
devised. A CLA is trained on the problem in Figure 3 
until it is completely confident. Then, some of the 
stimuli are given new correct responses (see Figure 4). 
The CLA continues to train until it has recovered its 

Figure 2 The Lifecycle a Stimulus φ : (1) There are no tactics available, φ is undirected (2) the first tactic appears 
and φ becomes directed (3) the first tactic is not effective and so φ abandons it and returns to being undirected (4) a 
second tactic appears and φ becomes directed again (5) φ’s selection confidence crosses the Independence 
threshold, φ explores its response range and does not use its tactic (6) φ loses confidence and crosses the 
dependence threshold and becomes dependent on its tactic again (7) φ  becomes independent again (8) φ ’s 
selection confidence crosses the support threshold and φ  becomes a supporter. φ ’s response with the highest 
probability become a new tactic, if no other stimulus supports already supports it (9) φ  loses selection confidence 
and  recants its support of its tactic. If no other stimuli support this tactic, the tactic will no longer be available (10) φ  
gains selection confidence and supports a tactic  
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Figure 3. Initial Problem State a CLA is first 
trained to solve a 300 by 6 classification problem. 
The green cells are the correct responses 
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Figure 4. Secondary Problem State After a CLA 
has trained on the initial state, some of the stimuli 
are given new correct responses. The green squares 
are correct responses that have not changed. The 
yellow squares are new correct responses 
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confidence or it reaches the maximum training time of 
100,000 contests.  
 
5. Factors 
 

There were three factors in these experiments: (1) 
the TBL thresholds that govern when a stimulus can 
use or support a tactic (2) the percentage of change in 
the learning task, that is, what percentage of the stimuli 
had to be relearned and (3) the collection length (the 
number of responses that a CLA makes between 
evaluations.  

The TBL thresholds (support, recantation, 
independence, and dependence) were all tested at the 
following settings (%) {50, 75, 90, 95, 99} under the 
following restrictions: 
• Independence threshold ≤ Support threshold 
• Dependence threshold ≤ Independence threshold 
• Recantation threshold ≤ Support threshold 

The total number of experiments for each possible 
threshold setting is 137.  

These experiments included three settings for the 
percentage of change in the problem: a 50% change 
when the problem started with two correct answers and 
added a third (see Figures 2 and 3), a 66% change (3 

correct responses to 6), and an 87% change (6 correct 
responses to 1).  

The collection lengths included in these 
experiments were {1, 2, 4, 6, 12}. A collection length 
of 1 is trivial because the problem becomes a simple 
process of elimination. A collection length of 12 is 
considerably more difficult. As the collection length 
gets longer, it becomes harder and harder to tell which 
stimuli chose correct responses and which did not.  
 
6. Results 
 

Due to space restrictions, the results from the most 
difficult factor settings are presented. These results are 
for a collection length of 12 (the longest collection 
length tested) and an 87% change in the problem. 
Since work has been presented previously about the 
effectiveness of TBL on learning, the results of the 
initial phases of learning are omitted. Only results for 
the second phase are presented. These results show the 
recovery after a change in the problem. If requested, 
the rest of the results can be provided.  
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Figure 4. These threshold settings represent one of the most favorable results (on the most difficult set of 
factors). These results can be explained by the fact that the stimuli are forced to become directed (use a tactic) 
immediately. They do not spend any time being independent. This is very helpful for recovery in situations 
where a stimulus has only one correct response. 
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Figure 5. The thresholds can be set so that there is no difference between TBL and the Standard Selection Policy. 
In this case, a stimuli recants its tactic fairly early in recovery; because the independence TH is at 50% (selection 
confidences can not be lower than 50%), any stimuli that recants uses the Standard Selection Policy for the rest of 
its existence (99% selection confidence is sufficient for a stimulus to consistently choose its primary response). 
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Figure 6. In this case, the stimuli never recant their support of a tactic. This is a problem because the compensation 
policy, which determines how to interpret the evaluation from the environment, has high expectations of stimuli that 
support and use tactics. In most cases, this policy helps TBL CLAs avoid local maxima, but if all the stimuli are 
supporters, then nothing except a completely correct evaluation will generate a positive compensation. At a 
collection length of 12, this is a very rare occurrence, and so the TBL CLA is receiving almost no positive 
compensations  
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7. Conclusions and Future Work 
 

Tactic-Based Learning has been shown to speed 
recovery when the environment undergoes a sudden 
and dramatic change. In order to acheive this 
advantage, the thresholds for using a tactic must be 
chosen carefully, as ill-placed thresholds can severly 
hinder recovery.  

This work leaves some intriguing questions which 
the authors hope to address in the future.  
• How does TBL affect recovery when stimuli 

may have more than one correct response? 
These experiments focused solely on learning 
tasks that involved a single correct choice for each 
stimulus, but there are many situations in which 
more than one response is acceptable.  

 
• How much does TBL aid recovery when the 

changes to the learning problem are introduced 
gradually? In these experiments the problem 
changed all at once, but there are many stituations, 
especially in real-world environments, that change 
slowly. It would be interesting to investigate if 
TBL is still effective under these conditions. 

 
• Is TBL effective when the changes to the 

learning task occur regardless of the learner’s 
readiness? For this research the CLA was allowed 
to train as long as necessary to become confident 
and accurate on the initial phase of the problem (or 
until it reached the time limit). While there are 
many learning tasks that can allow the learner to 
reach mastery, many tasks must change before 
then.  

 
• What other learning pathologies can be 

observed in a TBL CLA, and can these be 
mapped to known psychological phenomena? In 
order to more fully understand the learning 
process, it is important to look at how and why 
learning fails.  
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