
Noname manuscript No.
(will be inserted by the editor)

Getting Lazy and Pure in Code Contests by Using Haskell

Chen Huo

Received: date / Accepted: date (Regular Research Paper)

Abstract Lazy purely functional languages, like Haskell, are never the first choices for code con-
tests or competitive programming. We studied 107 problems from online code contest platforms,
and found that Haskell users do not yet have standardized solutions for common situations in code
contests due to the limitations of being lazy and pure. To name some, with side-effects prohibited
(pure), it is tricky to do IO and write graph algorithms under time complexity requirements. To
help laziness and purity reconcile with code contests, we derive an innovative collection of template
solutions inspired by both the functional programming literature and actual user solutions from on-
line code contest platforms. The collection will serve as an entry point for functional programming
learners to code contests and a showcase of Haskell usage in this domain.

Keywords Computer Science Education · Code Contests · Programming Languages · Functional
Programming

1 Introduction

It is challenging to use a lazy purely functional language like Haskell in code contests like International
Collegiate Programming Contest (ICPC) (if supported). During a time-limiting contest, contestants
are only allowed to browse standard language documentations online and to bring hard-copy mate-
rials with them. At the same time, for a programming language, being lazy brings uncertainty on
time complexity and being purely functional means traditional algorithms (i.e., based on mutation)
need to be completely rethought[7].

The research community have been working on innovative alternatives of traditional data struc-
tures and algorithms for lazy purely functional languages, e.g., [20, 11, 17, 21]. Although many have
been implemented and available as packages on Hackage, the Haskell package repository, some
key packages are missing in a typical Haskell installation[5] or on online contest platforms like
Hackerrank[4]. Typically contests will only provide the “standard” installation for any language.
So it is reasonable to assume that, for example, Erwig’s inductive graph library[12] will not be an
option in code contests.

To make things even harder, most of functional programming textbooks focus on explaining
the fundamental programming and language concepts[12]. As one can imagine, potential Haskell
contestants are struggling[8, 9]. Complaints range from lacking templates for IO to lacking feasible
graph algorithms to follow. Meanwhile, the imperative counterparts, like C or Java, can easily
translate algorithms in pseudo code to working code in contests. Template solutions can be printed

C. Huo
Software Engineering
Shippensburg University of Pennsylvania
MCT150, 1871 Old Main Dr., Shippensburg PA, 17257 USA
Tel.: +1-717-4771642
E-mail: chuo@engr.ship.edu

2 Chen Huo

and brought to the contests. Given such adversities, fewer contestants will use Haskell, and thus
fewer contests will support Haskell, entering a death spiral. To increase diversity, the goal of the
study is to narrow down the gap between Haskell and its imperative counterparts in code contests:
Can we derive a collective solution template from only standard Haskell packages, within the limits
of offline code contests?

To answer the question, we studied 107 problems from online code contest platforms. For each
problem, we solve it first and then compare the solution with other Haskell submissions. We con-
firm that Haskell has no uniform solutions like their imperative counterparts (see Section 3.1 as
an example). From the collection of community submissions and research literature, we distilled
solution templates in three major categories: IO actions, sample functional data structure usages,
and graph algorithms, conforming to the limits in code contests.

The rest of the paper is arranged as follows: Section 2 gives brief background on code contests
of our interest, lazy purely functional languages, and how the proposed template solutions are
chosen. More specific related work will be given in each of the 3 following sections. Section 3
discusses inputs and outputs for typical code contest problems. The proposed IO template uses
the do notation so that they resemble their imperative counterparts. Section 4 briefly introduces
functional data structures with two case studies: dynamic programming and disjoint sets. Section 5
first studies functional graph representations and algorithms. We present a hybrid of King’s[16] and
Erwig’s[12] methods. Lastly, Section 6 summarizes the study and the outlook of future work. The
appendices contain the template for contestants to bring to contests and a full list of the problems
studied from online platforms1.

2 Background

2.1 Code Contests

We prepare the templates in this study for offline contests similar to ICPC. For each problem
to solve, contestants will read in text inputs from standard input of certain layout and print out
the answers to standard output in certain format. The problems can be described as algorithmic
problems (e.g., as opposed to program design). For example, a problem may describe a map of cities
connected by highways with tolls and ask what’s the route with the least toll cost from one city
to another. Contestants need to find out that it’s the Dijsktra Shortest Path in disguise. In this
environment, this is crucial to have common IO templates for contest-like inputs and outputs and
have templates for common algorithms like Dijsktra. Since there’s no limit on printed documents,
it’s common practice that teams will bring printed template code of their choice to the contests.

There are a number of online code contest platforms which offer similar problems and test cases.
We surveyed them and found that Hackerrank[4] and Codewars[1] are the two with functioning
Haskell support. Hackerrank covers a wide range of problem domains and has the largest user base.
It provides most of problems used in this study (100). Although problems from Codewars do not
resemble code contest problems well, we included 7 problems on it to increase diversity. One of the
reasons that we choose problems from online platforms is their availability. Readers will need the
original problems to reinforce their understandings of our templates. Unlike the ICPC problems
which may not be available to everyone, readers can find the problems referenced in this paper
from Hackerrank by their names.

2.2 Lazy Purely Functional Languages

A language is purely-functional when side-effects are never allowed. In this sense, O’Caml is almost
pure since it allows reference types. Haskell is completely pure and IO actions are simulated by
monads[25]. It is not a surprise that the common array types in the C family do not fit well in
Haskell. That means we must rework on many algorithms from traditional algorithm textbooks
like [10]. (Some Haskell data structures do support true in-place mutation, e.g., STArray, which

1 Due to limit of space, appendices can be accessed on https://web.engr.ship.edu/~chuo/appendices.pdf.

https://web.engr.ship.edu/~chuo/appendices.pdf

Getting Lazy and Pure in Code Contests by Using Haskell 3

give users a chance to directly translate from C-like code. However, in this study, we’d like to see
how purity can be retained in code contests.)

Lazy stands for lazy evaluation or call-by-need. In lazy evaluation, an expression is not evaluated
until it is needed. Once it’s evaluated, its result is memoized. There are a number of publications
on the benefits of laziness, e.g., [14, 25, 15]. In the following sections, we will demonstrate, case by
case, how laziness help write compact code. At the same time, laziness leaves not much control to
programmers for when and whether calculations will take place. In an imperative language like C,
the time complexity of statement f(g(x)) can be calculated simply as the sum of the time cost of
g(x) and f(y), where y is the result of g(x). It is clearly not wise to find the minimum element in
a list by taking the first element after sorting the list. That would take O(N2) time using insertion
sort. However, for a lazy language, the same approach may only take O(N) time[24]. Under lazy
evaluation, insertion sort behaves like selection sort, so we can take the minimum as soon as it
moves to the front of the list[7].

It appears that, to use Haskell in code contests, one shall be familiar with monadic IO, find
alternatives to traditional algorithms based on array mutations, and have fundamental understand-
ings on time complexity in a lazy language. This study proposes to standardize the solutions for
these burden so that the contestants can focus on problem solving like other imperative language
users.

2.3 Evaluating The Solutions

Possible Haskell code templates are assessed in three facets: 1) Does it fit for code contests? That
is, easy to reference and type from hard-copies, and cover a range of specific problem domains in
code contests. 2) Does it have style? That is, being lazy, purely-functional, and modularized. 3) Is
it efficient? That is, do solutions from template code give reasonable asymptotic time complexity
and satisfy time limits of test cases from online platforms? To our best knowledge, this study is
the first that provides collective solutions regarding the above three characteristics.

3 Input and Output

3.1 Background

Inputs and outputs are typical side-effects. As a purely functional language, Haskell does IO through
Monads[22]. The consequence is that unlike the imperative counterparts which print out “Hello
World” on the first page, Haskell textbooks[15, 18, 23] typically bring it up near halfway through
the contents, by the do-notation. Readers will learn even later that do-notations are syntactic sugar
for monadic binds.

The process is highly volatile and not standardized across different users and problems from
Hackerrank submissions. It is too demanding to cope with function composition (.) and monadic
binding (>>=) just for code contests. Fig. 1 shows the first four Haskell submissions for Longest
Common Child problem on Hackerrank. To take a closer look at the first main in the listing: lcs is
the function that solves the problem. (<$>) and (<*>) are applicative functors to “lift” lcs in the
IO context, just to extract inputs from the two getlines. The first (=<<) is just the flipped (>>=),
the monadic bind.

main = print =<< lcs <$> getLine <*> getLine
main = print =<< solve. B.lines =<< B.getContents
main = print . solve . take 2 . lines =<< getContents
main = B.interact $

B.pack <$> show <$> solveBase5 <$> (B.unpack <$>) <$>
B.lines

Fig. 1: Submissions by BlueD, trimerous, wood6, rhovland are all different.

4 Chen Huo

All this effort is to get two strings from two lines, and output a single result string. For an IO
action as simple as this, there is not much consistency in Haskell submissions. On the other hand,
one can find that almost every C submission uses scanf("%s %s", s1, s2) and printf. That’s it.
Haskell users are dealing with so much adversity even before starting solving the actual problem.
This clearly calls for an intuitive template to follow.

Crux: Can we have a template for typical code contest inputs and outputs without involving
too many >>= and .?

3.2 Input Template

A fifth submission by akegalj coincides our goal except we also illustrate the use of let in the code
snippet below.

main = do

s1 <- getLine

s2 <- getLine

let ans = lcs s1 s2

print ans

Oftentimes you will be asked to read a list of numbers from a line. We present readInts as
a reusable component in Fig. 2. Although there are function compositions and nested fmaps, a
contestant can use it as a black box. Another important component we identified, among tens of
monadic functions, is replicateM. This function repeats a monadic computation for a given number
of times and returns a list in some monad. Equipped with our readInts and replicateM, we can
use them in various combinations for a large number of code contest problems. Given the example
input below, we can use the template IO code in Fig. 2.

5 2 % m numbers in a line, n lines

1 2 3 4 5

2 3 4 5 6

import Control.Monad (replicateM)

readInts :: IO [Int]
readInts = fmap (fmap read . words) getLine

main = do
[_, n] <- readInts -- n lines, don't care about m
nss <- replicateM n readInts -- nss is a list of lists
let ns1 = head nss1 -- first list
print $ size ns1 -- print out the size

Fig. 2: Example use of readInts and replicateM. The do block can be nested.

Besides the two components mentioned above, the built-in read is a versatile tool. Its type Read

a => String -> a tells you that it can interpret a string as whichever type you want, as long as
it has a Read instance. In our readInts, read is used on a numeric string, e.g., "3", separated
from a line by words. The resulting type, i.e., IO [Int], instructs read to interpret the string as
an integer. A variant is readLn :: Read a => IO a which reads a line directly from input, e.g.,
d <- readLn :: IO Double. Curious readers may wonder if readLn :: IO [Int] can replace our
readInts. It turns out the former only recognizes strings like "[1,2,3]", the default string form
for lists.

Getting Lazy and Pure in Code Contests by Using Haskell 5

3.3 Large Inputs

Oftentimes a problem will tell you the maximum size of inputs. When the input is expected to be
large, the performance of String IO may suffer due to the fact that the String type is a linked list
of characters. ByteString (as B) provides low-level IO functions with identical names. We can first
read in byte strings and then use ByteString.Char8 (as BC) utilities to convert the byte string to
wanted types. readInts can be written as follows without modifying other parts of the program.

readInts' :: IO [Int]

readInts' = B.unfoldr (BC.readInt . BC.dropWhile (== ' ')) <$> B.getLine

As an example, one test case of Dijkstra: Shortest Reach 2 has over 3 million edges for the
input graph and the input text file is about 36 MB in size. While using the regular String IO, it
takes roughly 15 seconds to finish reading the input. However, it only takes 1.5 seconds with the
byte-string version. We see one order of magnitude improvement by just swithcing to readInt’.

3.4 Outputs

The output side is generally less complex. Readers need to use putStr for string data type and
print for the other types, as print will also print out the quotes for strings. A common scene is
to print out lists or list of lists, separated by spaces or lines. The process is the dual to readInts.
We convert each item to a string by show and then assemble them using unwords or unlines. For
example:

-- print a list [1,2,3] to 1 2 3

putStr $ (unwords . fmap show) ns

-- print list of lists in separate lines

putStr $ unlines (fmap (unwords . fmap show) nss)

Readers might be surprised to see the old good printf. It is similar to read that printf “prints”
to whichever type you like as long as there’s an instance for PrintfType. For example, we can:

printf "%-3d %.6f" 3 3.14

3.5 Conclusion

Contestants can use the customized readInts and other components or variants to standardize the
IO part by just the do-notation. The use of let expressions can help process the inputs without
getting out of the monad.

4 Data Types

4.1 Related Work

As a purely function language, Haskell often has immutable tree-like alternatives to the imperative
counterparts. For example, arrays, sets, and heaps can be implemented by tree-like structures,
e.g., [21, 20]. Time complexity analysis with lazy evaluation is challenging. Luckily, Okasaki[20]
summarizes techniques for analyzing and constructing lazy functional data structures. For the
Haskell collection types, many operations can have similar amortized costs to their imperative
counterparts, while some may not. Contestants shall choose the right data structure with care.

Crux: How does one use the lazy and pure Haskell collection alternatives in code contests? In
this section, we present two use cases of Haskell array and set operations, dynamic programming
and Kruskal (minimal spanning tree).

6 Chen Huo

4.2 Array: Dynamic Programming

For Haskell arrays, elements can accessed by (!), e.g., arr ! i, which takes constant time (when
the indices are integers or alike). Updates are more efficient if done in a batch by (//). When (//)

takes in an array of size N and a list of index-value pairs of size M , the time cost is O(N + M).
Dynamic programming is a technique that memoizes results of sub-problems. The structure for

storing the results is usually an array. The issue with immutable arrays is that once we initialize
the array, it will be inefficient to change array elements later in the process (for M will not be large
each time). Luckily we can leverage the lazy constructor array.

array :: Ix i => (i, i) -> [(i, e)] -> Array i e

The first parameter is a 2-tuple of the index range. We have the flexibility to make the array 0-
indexed or 1-indexed. The later can be convenient for a graph presentation since the node numbers
often starts at 1 in code contests. The second parameter is a list of index-value pairs to be populated
to the array. Laziness allows us to access array elements on the fly during the construction as long
as the accessed elements are ready. Fig. 3 shows the classic Fibonacci sequence problem. In Fig. 3b,
the local function go has the shape of the recursive fib in Fig. 3a except that recursive calls are
replaced with array subscripts. The array arr calls go in the middle of construction.

fib 0 = 1
fib 1 = 1
fib n = fib (n-1) + fib (n-2)

(a) Recursive version of fib

fib n = arr ! n
where go 0 = 1

go 1 = 1
go n = arr ! (n - 1) + arr ! (n - 2)
arr = array (0, n)

[(i, go i) | i <- [0..n]]

(b) Dynamic programming version of fib. go has
the shape of recursive fib. Recursive function calls
are replaced with array subscripts.

Fig. 3: Replacing the function calls with array subscripts.

This technique coincides with Tikhon’s blog on dynamic programming[6]. The blog post sum-
marizes a mechanical process as follows: (1) add an array at the same scope level as the recursive
function, (2) define each array element as a call back into the function with the appropriate index,
and (3) replace each recursive call with an index into the array. We show a 2-dimensional example,
the Coin Change problem on Hackerrank in Fig. 4: How many ways are there to change m cents with
a list of (sorted) coin denominations denoms? Line 7 to 10 resembles the recursive solution with
function calls replaced with array subscripts. Line 6 constructs the array with a variant listArray
which omits the index part in the list elements by assuming the default order.

We sampled 20 submissions among about 100 passing submissions on Hackerrank. About a
third of them used this technique. Other methods include using a List, using a Map, and folding
a List. List indexing is O(N) and O(log(N)) for Map. The time limit on test cases cannot exclude
these solutions. The List folding method may have better space efficiency but is harder to follow
and generalize. It is similar to the method used in [23] who then pointed us to Data.Array.

4.3 Set: Kruskal Minimal Spanning Tree

The Kruskal algorithm can compute a minimal spanning tree (MST) with the set of graph edges.
The algorithm needs the edges sorted by their weights, a disjoint (union-find) set. Here we present
a quick implementation of disjoint sets using a list of IntSet in Fig. 5, a program that computes
the weight of an MST in a graph. We use the built-in Set union function to union two sets. For
find, list partition is used on line 11 for finding sets containing nodes u or v. The resulting uv

must either be empty or contain two sets, as shown on line 7 and 8. Membership and insertion for
an IntSet take O(min(n,W)) time where W is number of bits in Int (32 or 64). Union and list

Getting Lazy and Pure in Code Contests by Using Haskell 7

1 change :: [Int] -> Int -> Integer
2 change denoms m = c ! (n, m)
3 where bounds = ((0,0),(length denoms, m))
4 ds = listArray (1,n) denoms
5 n = length denoms
6 arr = listArray bounds [go i j | (i,j) <- range bounds]
7 go i j | i == 0 = 0
8 | j == 0 = 1
9 | j - (ds!i) < 0 = arr ! (i-1,j)

10 | otherwise = arr ! (i-1,j) + arr ! (i,j-(ds!i))

Fig. 4: Coin Change: a 2-dimensional dynamic programming example.

partition both take linear time. This implementation is efficient enough in practice that it finishes
within 0.15 sec for a graph with 1000 nodes and 10000 edges. In addition, a Set (pq) is used as a
priority queue to obtain the minimums on the fly. Although the Set minimum operation will take
O(logN) time, since in this case the minimum is always removed whenever it is queried, on line 10,
it is still efficient. There are 9 passing Haskell submission. There are all kinds of implementations
using various data types. We found that ours with IntSet is more readable and succinct.

1 type DSet = [IntSet]
2 type Edge = (Int, (Int, Int))
3

4 kruskal :: Set Edge -> DSet -> Int -> Int
5 kruskal pq ds sum
6 | Set.null pq = sum
7 | [] <- uv = kruskal pq' (fromList [u,v] : ys) (sum+w)
8 | [s1, s2] <- uv = kruskal pq' (union s1 s2 : ys) (sum+w)
9 | otherwise = kruskal pq' ds sum

10 where ((w,(u,v)), pq') = Set.deleteFindMin pq
11 (uv, ys) = partition ((||) <$> member u <*> member v) ds

Fig. 5: Quick implementations of a priority queue and a disjoint set by Set and IntSet.

4.4 Conclusion

Laziness gives unusual control flow so that an immutable array can appeared to be mutable during
construction. Updates are more efficient than expected when it’s done in a batch. Set is a typical
tree structure so that many operations take logarithm time. IntSet operations are close to constant
time. Our template in Fig. 5 demonstrated their potentials.

In addition to Array and Set, the standard installation also includes Vector and Map. Vector
is integer-indexed array enriched with plenty of utility functions. Map is also a tree-like structure
which has O(logN) for common operations. Okasaki[20] includes compact source code for more
kinds of lazy functional data structures.

5 Graph Algorithms

5.1 Related Work

Traditional graph representations and algorithms reply heavily on mutations[10]. It is hard for
Haskell users to find proper algorithms to follow[8, 9]. Some resort to direct translations from
imperative algorithms[3, 19]. From the research community, King explored laziness in breadth and
depth first searches in Haskell[17, 16]. Erwig proposed the inductive graph library which enables the
more revolutionary “active pattern matching”[13, 11, 12]. Both approaches generate intermediate

8 Chen Huo

data structures from depth or breadth first searches (dfs or bfs), which subsequent algorithms can
reuse. Thanks to laziness, Haskell can use program fusion to eliminate much of the overhead for
using intermediate representations.

There are several limits in the potential solutions above for code contests. Using mutable data
structures like STArray in Haskell jeopardizes readability and extendability . King’s and Erwig’s
methods are lazy and purely functional, however, neither is expected to be included in code con-
tests [5]. (The Data.Graph module implements King’s depth first search algorithms and is available
on [4].) Erwig’s representation with active pattern matching is too complex to be copied down
during code contests, and King’s breadth first search family does not have good intermediate rep-
resentation — Dijisktra is done by mutable arrays[16].

Crux: Can we find lazy and pure graph representations and algorithms that can be feasible to
use in code contests? In the rest of the section, we present template algorithms based on depth and
breadth first searches. The approach is a hybrid of King’s graph representation, depth first search
algorithms, and Erwig’s breadth first search algorithms.

5.2 Depth First Search

The Array graph representation is show on line 1 and 2 in Fig. 6. The intermediate representation
of the dfs search is Forest Vertex which is a list of Trees. A Tree is a node and a possibly empty
sub-forest. A Tree structure is generated by the search on line 10. Interestingly, since generate

does not keep a record of visited vertices and gets neighbors just by g!v, the process is infinite.
That’s definitely wrong in a non-lazy language, however, it’s too soon to say that in Haskell. The
infinite forest is trimmed at later stage by chop. From the trimmed forest, it takes just a few more
lines of code from the forest to topology sort topSort, reachability reachable, strong/bidirectional
connected components scc/bcc. Due to limit of space, interested readers can find documentations
and source code on [2]. Contestants can trim the source code to code contest needs and keep it as
a template for dfs algorithms.

1 type Vertex = Int
2 type Graph = Array Vertex [Vertex]
3

4 data Tree a = Node { rootLabel :: a, subForest :: [Tree a] }
5 type Forest a = [Tree a]
6

7 dfs :: Graph -> [Vertex] -> Forest Vertex
8 dfs g vs = prune (bounds g) (map (generate g) vs)
9

10 generate g v = Node v (map (generate g) (g!v))

Fig. 6: A excerpt of King’s[16] dfs algorithm in Data.Graph module.

5.3 Breadth First Search

Erwig[12] proposed a functional intermediate representation, a root tree or rtree, for breadth first
search algorithms. A root tree consists of root paths. A root path is just a list from the destination
to the source. For a labeled (weighted) graph, a node in a root tree carries the total cost of the
path. Fig. 7 shows the Dijisktra Shortest Path algorithm (with a priority heap) in [12] except that
we keep track of unexpanded nodes by using an IntSet. On line 15, a node is removed from the
set when it’s expanded. On line 10, the algorithm stops when either every node has been expanded
or the heap is empty. The latter can happen when some nodes are not reachable from the source.
The heap stores root paths with the key being the accumulated weight on the first node. Line 14
“pops” the minimum path and h’ is the new heap.

Getting Lazy and Pure in Code Contests by Using Haskell 9

Similarly, we use a heap implementation less than 50 lines from [20]. Such functional heaps don’t
have efficient decreaseKey. But we can work around it: the expand function updates the costs on
the successors and insert them in the heap without being compared with their previous costs. If a
duplicate node is in a path with more cost, by the time when this path is popped, this node must
have been removed from vs, see on line 11. This framework can be used in other breadth search
based algorithms such as Prim, the Snakes and Ladders on Hackerrank, etc.

1 type LNode = (Node, Weight)
2 newtype LPath = LPath [LNode] deriving Show
3 type LRTree = [LPath]
4

5 expand :: Int -> LPath -> [(Node, Weight)] -> [Heap LPath]
6 expand d (LPath p) = fmap (\(w, d') -> singleton (LPath ((w, d+d'):p)))
7

8 dijkstra :: IntSet -> Heap LPath -> Graph -> LRTree
9 dijkstra vs h g

10 | isEmpty h || S.null vs = []
11 | S.notMember v vs = dijkstra vs h' g
12 | otherwise = p:dijkstra vs' h'' g
13 where
14 (p@(LPath ((v,w):_)), h') = findDeleteMin h
15 vs' = delete v vs
16 hs = expand w p (g ! v)
17 h'' = mergeAll (h':hs)

Fig. 7: Erwig’s[12] bfs variant for Dijkstra’s Shortest Path using array graph representation.

We survey Haskell submissions of Dijkstra: Shortest Reach 2 on the choices for data structures
for 1) visited/unvisited nodes, 2) finding the current minimum path, 3) current shortest path to
every node, 4) graph representation. Among the 9 passing Haskell submissions, we can see STArray,
Array, Map, Set being used for any of the four purposes. This again shows how ad-hoc and volatile
the Haskell solutions are in code contests. Our solution is more modularized and more compact,
derived from Erwig’s work.

5.4 Conclusion

We have a hybrid and tailored solution template for graph representations and algorithms in code
contest environments. The template is relatively straightforward to understand, leverages advan-
tages of lazy functional programming, and contains minimum code to write down. Its efficiency has
been validated by the online contest platforms.

6 Conclusion and Future Work

Code contests represent a special domain of programming. There are mature solutions using imper-
ative languages and traditional algorithms for this domain. The outcome of the study, the collective
template (and why they are chosen), distills the essence of the community solutions and the re-
search literature for a lazy purely functional language, Haskell, to be used in code contests. The
template solutions cover a wide range of use cases, retain and leverage laziness and purity, and
remain compact to type in contests. The template solutions demonstrated their efficiency by ex-
hibiting reasonable asymptotic time complexity and passing test cases from online platforms under
time limits. As there is no “one size fits all” template, readers can expand the template as they
want. This study will clear the obstacles for Haskell learners to take a further step by participating
in code contests, and can spark more discussions in using lazy purely functional languages in the
domain of code contests.

10 Chen Huo

For future work, we can widen the domain of the problems of the study, such as including ICPC
problems. We can also explore the possibility of actually having advantages for using a lazy purely
functional language in code contests. Finally, if lazy purely functional languages become promising
because of this and similar studies, we would like to form directives how to set up the Haskell
environment, and advocate more support of functional languages in code contests.

References

1. Code wars. URL https://www.codewars.com/

2. Data.Graph. URL https://hackage.haskell.org/package/containers-0.6.4.1/docs/

Data-Graph.html

3. Dijkstra’s algorithm. URL https://rosettacode.org/wiki/Dijkstra%27s_algorithm

4. Environment and samples. URL https://www.hackerrank.com/environment

5. Included packages. URL https://www.haskell.org/platform/contents.html

6. Tikhon Jelvis. URL https://jelv.is/blog/Lazy-Dynamic-Programming/

7. Functional algorithm design. Science of Computer Programming 26(1), 15–31 (1996)
8. Does anyone use haskell (2013). URL https://codeforces.com/blog/entry/1436

9. Using haskell for competitive programming (2017). URL https://www.reddit.com/r/

haskell/comments/5sspgd/using_haskell_for_competitive_programming/

10. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, Third
Edition, 3rd edn. The MIT Press (2009)

11. Erwig, M.: Functional programming with graphs. Association for Computing Machinery, New
York, NY, USA (1997)

12. Erwig, M.: Inductive graphs and functional graph algorithms 11(5) (2001)
13. Erwig, M., Iv, P.: Graph algorithms = iteration + data structures? - the structure of graph

algorithms and a corresponding style of programming (1996)
14. Hughes, J.: Why Functional Programming Matters. The Computer Journal 32(2), 98–107

(1989)
15. Hutton, G.: Programming in Haskell, 2nd edn. Cambridge University Press, USA (2016)
16. King, D.: Functional programming and graph algorithms (1996). Ph.D. Thesis
17. King, D.J., Launchbury, J.: Structuring depth-first search algorithms in haskell. Association

for Computing Machinery, New York, NY, USA (1995)
18. Lipovaca, M.: Learn You a Haskell for Great Good! A Beginner’s Guide, 1st edn. No Starch

Press, USA (2011)
19. MichaelGilliland: Roughing out dijkstra’s algorithm in haskell (2019). URL https://www.

youtube.com/watch?v=RvWnYrQ_WSk&ab_channel=MichaelGilliland

20. Okasaki, C.: Purely Functional Data Structures. Cambridge University Press, USA (1998)
21. O’Neill, M.E., Burton, F.W.: A new method for functional arrays 7(5) (1997)
22. Peyton Jones, S.L., Wadler, P.: Imperative functional programming. Association for Computing

Machinery, New York, NY, USA (1993)
23. Thompson, S.: The Haskell: The Craft of Functional Programming, 3rd edn. Addison-Wesley

Longman Publishing Co., Inc., USA (2011)
24. Wadler, P.: Strictness analysis aids time analysis. Association for Computing Machinery, New

York, NY, USA (1988)
25. Wadler, P.: The essence of functional programming. Association for Computing Machinery,

New York, NY, USA (1992)

https://www.codewars.com/
https://hackage.haskell.org/package/containers-0.6.4.1/docs/Data-Graph.html
https://hackage.haskell.org/package/containers-0.6.4.1/docs/Data-Graph.html
https://rosettacode.org/wiki/Dijkstra%27s_algorithm
https://www.hackerrank.com/environment
https://www.haskell.org/platform/contents.html
https://jelv.is/blog/Lazy-Dynamic-Programming/
https://codeforces.com/blog/entry/1436
https://www.reddit.com/r/haskell/comments/5sspgd/using_haskell_for_competitive_programming/
https://www.reddit.com/r/haskell/comments/5sspgd/using_haskell_for_competitive_programming/
https://www.youtube.com/watch?v=RvWnYrQ_WSk&ab_channel=MichaelGilliland
https://www.youtube.com/watch?v=RvWnYrQ_WSk&ab_channel=MichaelGilliland

Getting Lazy and Pure in Code Contests by Using Haskell 11

A List of Problems

Hackerrank: (1) Solve Me First, (2) Simple Array Sum, (3) Compare the Triplets, (4) A Very Big Sum, (5) Di-
agonal Di↵erence, (6) Plus Minus, (7) Staircase, (8) Mini-Max Sum, (9) Birthday Cake Candles, (10) Time
Conversation, (11) Grading Students, (12) Apple and Orange, (13) Number Line Jumps, (14) Between Two Sets,
(15) Break the Records, (16) Subarray Division, (17) Divisible Sum Pairs, (18) Migratory Birds, (19) Bill Division,
(20) Sales by Match, (21) Counting Valleys, (22) Electronics Shop, (23) Cats and a Mouse, (24) Forming a Magic
Square, (25) Picking Numbers, (26) Climbing the Leaderboard, (27) The Hurdle Race, (28) Designer PDF Viewer,
(29) Utopian Tree, (30) Angry Professor, (31) Beautiful Days and the Movies, (32) Viral Advertising, (33) Save
the Prisoner, (34) Circular Array Rotation, (35) Sequence Equation, (36) Find Digits, (37) Extra Long Factorials,
(38) Append and Delete, (39) Sherlock and Squares, (40) Library Fine, (41) Cut the Sticks, (42) Non-Divisible
Subset, (43) Repeated String, (44) Jumping on the Clouds, (45) Equalize the Array, (46) ACM ICPC Team,
(47) Taum and B’day, (48) Organizing Containers of Balls, (49) Encryption, (50) Bigger is Greater, (51) Modified
Kaprekar Numbers, (52) Beautiful Triplets, (53) Minimum Distances, (54) Halloween Sale, (55) The Time in
Words, (56) Chocolate Feast, (57) Service Lane, (58) Lisa’s Workbook, (59) Flatland Space Stations, (60) Fair
Rations, (61) Cavity Map, (62) Manasa and Stones, (63) The Grid Search, (64) Happy Ladybugs, (65) Strange
Counter, (66) 3D Surface Area, (67) Absolute Permutation, (68) Larry’s Array, (69) Almost Sorted, (70) Intro to
Tutorial Challenges, (71) HackerRank in a String, (72) Quicksort 1 - Partiion, (73) Counting Sort 1, (74) Counting
Sort 2, (75) The Full Counting Sort, (76) Beautiful Binary String, (77) Closest Numbers, (78) The Love-Letter
Mystery, (79) Find the Median, (80) Palindrome Index, (81) Anagram, (82) Making Anagrams, (83) Sherlock
and the Valid String, (84) Sherlock and Anagrams, (85) Common Child, (86) Roads and Libraries, (87) Journey
to the Moon, (88) Subset Component, (89) Breadth First Search: Shortest Reach, (90) Kruskal (MST): Really
Special Subtree, (91) Even Tree, (92) Snakes and Ladders: The Quickest Way Up, (93) Prim’s (MST): Special
Subtree, (94) Dijkstra: Shortest Reach 2, (95) Clique, (96) Floyd: City of Blinding Lights, (97) The Coin Change
Problem, (98) Them Maximum Subarray, (99) The Longest Common Subsequence, and (100) AND Product

Codewars: (1) Sum by Factors, (2) Permutations, (3) Vasya - Clerk, (4) Isograms, (5) Sum of Digits/Digital
Root, (6) Credit Card Mask, and (7) Multiply

Haskeller in Code Contests

import Control.Monad (replicateM)

import Text.Printf (printf)

readInts :: IO [Int]

readInts = fmap (fmap read . words) getLine

main = do

-- case 1: size first, elements next line

-- 5

-- 1 2 3 4 5

_ <- getLine -- skip a line

ns <- readInts -- read ints to a list

-- case 2: num of lists, followed by lists

-- 3

-- 1 2 3

-- 3 4

-- 6 8 9 10

n <- readLn :: IO Int -- read 3 as int

nss <- replicateM n readInts -- 3 lists

-- case 3: fixed numbers on a line

-- 8 5 7

[height, width, weight] <- readInts

-- case 4: variable number of structures

-- 1

-- john

-- 25

n' <- readLn :: IO Int -- read 1 as int

ppl <- replicateM n' $ do

name <- getLine

age <- readLn :: IO Int

return (name, age) -- name age tuple

-- use let to process raw inputs

let beerSafe = filter (\(_, a)->a > 21) ppl

-- case 1: [2, 4, 5] => 2 4 5

putStr $ unwords (fmap show ns)

-- case 2: [2, 4, 5] => 2\n4\n5\n

putStr $ unlines (fmap show ns)

-- case 3: print a single int

print $ min 3 4

-- case 4: good old printf

printf "%d %d" n n'

I/O

Array building is lazy so dynamic programming looks
just like recursion in Haskell. Replace recursive func-
tion calls with array access.

array :: Ix i -- Int is Ix

=> (i, i) -- bound, e.g. (1, 5)

-> [(i, e)] -- value e at index i

-> Array i e

-- recursive fib 30: 1.62 sec, 574 MB

-- DP fib 30: 0.00 sec, 92 KB

fib n = go n

where

go 1 = 1

go 2 = 1

go m = arr ! (m-1) + arr ! (m-2)

arr = listArray (1,n) [go i | i <- [1..n]]

2-D Example: Coin change, given a list of coin de-
nominations ns, calculate how many ways are there
to change m cents.
Example: m = 10, ns = [2,5,3,6]

0 1 2 3 4 5 6 7 8 9 10

2 1 0 1 0 1 0 1 0 1 0 1
5 1 0 1 0 1 1 1 1 1 1 2
3 1 0 1 1 1 2 2 2 3 3 4
6 1 0 1 1 1 2 3 2 4 4 5

-- Answer is: c ! ((length ns), m)

-- as is the array copy of ns

as = listArray (1,n) ns

bnds = ((0,0), (length ns, m))

c = listArray bnds

[go i j | (i,j) <- range bnds]

go i j | i == 0 = 0

| j == 0 = 1

| j - (as!i) < 0 = c ! (i-1,j)

| otherwise = c ! (i-1,j) +

c ! (i,j-(as!i))

Dynamic Programming

-- disjoint set

-- union -> union

-- find -> partition with (u or v)

type DSet = [IntSet]

-- labelled edage

type Edge = (Int, (Int, Int))

kruskal :: Set Edge -> DSet -> Int -> Int

kruskal pq ds sum

| Set.null pq = sum

| [] <- uv =

kruskal pq' (fromList [u,v]:ys) (sum+w)

| [s1, s2] <- uv =

kruskal pq' (union s1 s2 : ys) (sum+w)

| otherwise = kruskal pq' ds sum

where ((w,(u,v)),pq') = Set.deleteFindMin pq

(uv, ys) =

partition

((||) <$> member u <*> member v)

ds

Kruskal MST

ghci debugger. You have access to free variables of
the expression to be evaluated.

Command Description
:break <lineno> Set break point
:list Print code
main Run code
:show breaks Show break points
:show context Show variable binding
:set stop <action> Do action when a break

point is hit
:step Step
:print x Print the value of x, forces

x if was a thunk
:hist History of evaluation steps
:abandon Stop execution
:set +s Measure running time and

memory used
Debug.Trace
trace and traceShow

Debugging

1

import Control.Monad

import Data.Array (Array, accumArray)

import Data.List (foldl)

import Data.Set (empty, insert, toList)

readInts :: IO [Int]

readInts = fmap (fmap read . words) getLine

-- unlabelled graph representation

type Vertex = Int

type Graph = Array Vertex [Vertex]

-- intermediate representation for dfs

data Tree a = Node a [Tree a]

type Forest a = [Tree a]

-- intermediate representation for bfs

type LNode = Vertex

type LPath = [LNode]

type LRTree = [LPath]

-- build an unlabelled graph

buildG :: Int -- number of vertices

-> [(Vertex, Vertex)] -- edges

-> Graph

buildG n es =

accumArray

(flip (:)) -- accumulate dest to list

[] -- each adjacent list starts empty

(1, n) -- vertex number from 1 to n

(es ++ fmap revE es) -- bidirectional

where revE (x, y) = (y, x)

-- read in a graph

main = do

[n, m] <- readInts -- n nodes, m edges

es <- replicateM m readInts

let nodup = -- remove duplicates in set

foldl (flip insert)

empty $

fmap (\[x,y] -> (x,y)) es

g = buildG n (toList nodup)

-- if using Data.Graph connected components

-- to get number of components in g

print $ length (components g)

Graph Representations

type Node = Int

type Weight = Int

type Graph = Array Node [(Node, Weight)]

type LNode = (Node, Weight)

newtype LPath = LPath [LNode] deriving Show

type LRTree = [LPath]

instance Eq LPath where

(LPath ((_,w):_)) == (LPath ((_,v):_)) = w == v

instance Ord LPath where

(LPath ((_, w):_)) `compare`

(LPath ((_, v):_)) = w `compare` v

mkEdge (s,t,w) = (s, (t, w))

revE (s, (t, w)) = (t, (s, w))

buildG :: Int -> [(Int,Int,Int)] -> Graph

buildG n edges =

accumArray (flip (:)) [] (1,n) biEdges

where

biEdges = es ++ fmap revE es

es = mkEdge <$> edges

dijkstra :: Int -> Int -> Graph -> LRTree

dijkstra n s =

dijkstra'(S.fromList [1..n])

(singleton (LPath [(s, 0)]))

dijkstra' :: IntSet -> Heap LPath

-> Graph -> LRTree

dijkstra' vs h g

| isEmpty h ||

S.null vs = [] -- Data.Set as S

| S.notMember v vs = dijkstra' vs h' g

| otherwise = p:dijkstra' vs' h'' g

where

(p@(LPath ((v,w):_)), h') = findDeleteMin h

vs' = delete v vs

hs = expand w p (g ! v)

h'' = roll (h':hs)

expand :: Int -> LPath -> [(Node, Weight)]

-> [Heap LPath]

expand d (LPath p) = fmap

(\(w, d') -> singleton (LPath ((w, d+d'):p)))

-- Heap is from [Okasaki 98] page 198

Graph: Dijkstra

Use these “special” ones only when you know regular
Int or String will slow down the program.

Type Description
Int signed 30-bit, most likely 32 or 64 im-

plementations
Int8 8-bit signed. Others include Int16,

Int32, Int64
Word8 8-bit unsigned. Others include

Word16, Word32, Word64
Integer Arbitary-precision integers
ByteString Represents sequences of bytes or 8-

bit characters. More efficient but has
the same interfaces as String. Used
qualified import.

Bitwise Operation are supported through the Bits

type class. Most integral types are instances of it.

import Data.Bits

5 .&. 3 -- bitwise and

ShiftR 5 3 -- shift right 3 places

Integer to binary (as String). The last "" is needed
by ShowS which uses a difference list trick for effi-
ciency.

import Data.Char (intToDigit)

import Numeric (showIntAtBase)

showIntAtBase 2 intToDigit 12 "" -- 1100

More Data Types

To see how the choices were made and related work:
TBA

Campanion Paper

2

	Introduction
	Background
	Input and Output
	Data Types
	Graph Algorithms
	Conclusion and Future Work

