
Improving Oracle Quality by Detecting
Brittle Assertions and Unused Inputs in Tests

Chen Huo
Computer & Information Sciences Department

University of Delaware, DE, USA
huoc@udel.edu

James Clause
Computer & Information Sciences Department

University of Delaware, DE, USA
clause@udel.edu

ABSTRACT
Writing oracles is challenging. As a result, developers often
create oracles that check too little, resulting in tests that
are unable to detect failures, or check too much, resulting
in tests that are brittle and difficult to maintain. In this
paper we present a new technique for automatically analyzing
test oracles. The technique is based on dynamic tainting
and detects both brittle assertions—assertions that depend
on values that are derived from uncontrolled inputs—and
unused inputs—inputs provided by the test that are not
checked by an assertion. We also presented OraclePolish, an
implementation of the technique that can analyze tests that
are written in Java and use the JUnit testing framework.
Using OraclePolish, we conducted an empirical evaluation of
more than 4000 real test cases. The results of the evaluation
show that OraclePolish is effective; it detected 164 tests that
contain brittle assertions and 1618 tests that have unused
inputs. In addition, the results also demonstrate that the
costs associated with using the technique are reasonable.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Experimentation, Measurement

Keywords
Unit testing, Improving oracles, Brittleness, Unused inputs,
Dynamic tainting, Mutation

1. INTRODUCTION
Although software tests are conceptually simple—they are

composed of two parts: inputs that are used to execute the
program under test and an oracle that is used to verify that
the execution induced by the inputs produces the expected
results—they are often difficult to write in practice. This

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FSE’14 , November 16–22, 2014, Hong Kong, China
Copyright 2014 ACM 978-1-4503-3056-5/14/11 ...$15.00.

is especially true for modern software which is typically
large and complex. Together, these characteristics produce a
situation where test writers have an imperfect understanding
of not only what inputs a program may receive but also
how the program should behave and what outputs it should
produce. In short, when writing tests, selecting neither inputs
nor oracles is straightforward.

Fortunately, the software engineering research community
has provided many techniques that can help developers write
test cases (e.g., [6, 7, 9, 15, 17–19, 22, 26, 28]). In general,
these techniques focus primarily on test data selection or
generation (i.e., choosing inputs). While such techniques
can be successful in helping developers write tests, they only
address part of the overall problem. In order to provide more
effective help, it is necessary to not only provide developers
with help choosing inputs but also with help creating oracles.

In many testing frameworks, an oracle is encoded as a
set of assertions that check whether a subset of a program’s
state (variables) have particular values. Considered in this
way, choosing an oracle is analogous to choosing a point on
the continuum from checking nothing to checking the entire
state of the program. While neither extreme is appropriate—
oracles that check nothing will never find bugs and oracles
that check everything will likely be difficult to maintain
and enormous—there is a point somewhere between that
represents the ideal oracle. Unfortunately, identifying this
point is challenging. In practice, the oracles written by testers
often miss the mark by either: (1) checking too little by
failing to include assertions for relevant variables—which can
result in tests that are unable to reveal failures (i.e., missed
warnings), or (2) checking too much by including assertions
about irrelevant variables—which can lead to brittle tests
that fail when they should not (i.e., false warnings). Existing
work on assessing the quality of test oracles addresses only
the first of these possibilites by detecting tests that are likely
missing assertions (e.g., [21, 23, 25]).

In this paper, we present a novel dynamic analysis tech-
nique that addresses both possibilites. The technique is
based on dynamic tainting and works by tracking the flow of
controlled and uncontrolled inputs along data- and control-
dependencies at runtime. Intuitively, controlled inputs are
inputs explicitly provided by the test itself (e.g., constants
that appear in the test method) and all other inputs are
considered uncontrolled. When a test finishes execution, the
technique uses the tracked information to generate reports
that identify brittle assertions—assertions that check values
that are derived from inputs that are not controlled by the
test and unused inputs—inputs that are controlled by the test

 1 public class EmployeeTest extends TestCase {
 2 String firstName, lastName, ssn;
 3 double baseSalary, commissionRate = 0.5, grossSales;
 4 Employee E = new Employee(firstName, lastName, ssn,
 5 baseSalary, commissionRate,
 6 grossSales);
 7
 8 public void testToString() {
 9 E.setFirstName("John")
10 E.setGrossSales(200);
11 E.setBaseSalary(100);
12 String expected = "Employee: null\n" +
13 "social security number: null\n" +
14 "total salary: 200.00";
15 assertEquals(E.toString(), expected);
16 }
17
18 public void testAbbreviateLastName() {
19 E.setLastName("Moore-Towers");
20 String expected = "Moore";
21 assertEquals(E.abbreviatedLastName(), expected);
22 }
23 }

Figure 1: An example of a brittle test case.

but are not checked by an assertion. These reports are then
filtered to remove false positives and presented to testers.

To evaluate our technique, we created a prototype imple-
mentation that analyzes Java applications and tests written
using the JUnit testing framework.1 We used the prototype
tool to analyze over 4,000 tests from real, open source soft-
ware projects and to answer several research questions about
(1) the feasibility and effectiveness of the technique, and
(2) the quality of existing test oracles.

This work makes the following contributions:

• The definition of a new technique that can automati-
cally analyze tests to detect both brittle assertions and
unused inputs.
• A prototype implementation of the technique that im-

plements the technique for Java applications with test
cases written using JUnit.
• An extensive empirical study that demonstrates our

tool’s feasibility, accuracy, and usefulness.

2. MOTIVATING EXAMPLE
In this section, we provide an example that will be used

in the remainder of the paper to illustrate our technique.
Figure 1 shows the example, which consists of several tests
derived from the test suite for CommissionEmployee, a small
application that is used to perform various computations
necessary to calculate payroll information for sales employ-
ees. Consider testToString which is checking whether Em-

ployee’s toString method produces the expected output.
While this test fulfills its goal, it has several problems.

First, testToString is brittle because it makes assertions
about values derived from inputs that it does not control.
More specifically, the test assumes that the values of the
employee’s last name, social security number, and commission
rate are not changed between the time when the employee is
created and the time when the result of toString is checked.
Note that no such assumption is made about the employee’s
first name, gross sales, or base salary as these values are
controlled by the test (i.e., they are explicitly set to “John”,
200 and 100, respectively, during the execution of the test).

1
http://www.junit.org

1 int x, y, z;
2 int a = input();
3 int b = input();

4 x = a - 2;
5 y = b * 4;
6 z = x + y;

(a)

1 int x, y;
2 int a = input();

3 if(a > 0)
4 x = 0;
5 else
6 x = 1;
7 y = 2;

(b)

Figure 2: Code examples that illustrate information flow
through data and control dependencies.

In practice, there are many ways that testToString’s
assumption that the employee’s last name, social security
number and commission rate are not changed could be vio-
lated. For example, if testAbbreviateLastName was added
to the test suite, testToString would fail intermittently, de-
pending on the order in which the test cases are executed.
If testToString is executed first, the assumption holds and
both tests will pass. However, if testAbbreviateLastName is
executed first, the assumption is violated and testToString

will fail because the value of the employee’s last name will
no longer be null. To prevent the possibility of failures due
to brittleness, a test should not check values derived from
inputs that it does not control. For testToString, this can
be accomplished by explicitly controlling the values of the em-
ployee’s last name, social security number, and commission
rate, as is done for first name, gross sales, and base salary.
This can also be accomplished by creating a new instance
of Employee with known values or by explicitly setting the
employee’s last name, social security number, and commis-
sion rate. Both of these options fix the test’s brittleness by
ensuring that the values checked by the its oracle are derived
from controlled inputs.

The second problem with testToString is that one of
the test’s controlled inputs is unused. Although the test
specifically sets the employee’s first name to “John”, none of
its assertions check values derived from this input. Unused
inputs suggest that the test’s author is unsure about the
behavior of the application under test, possibly because mod-
ifications made to the application have not been reflected in
the test or simply because the tester was unfamiliar with the
code when the test was written. In the worst case, an unused
input indicates that a test is missing an assertion which could
lead to missed warnings—situations where the test should
fail but does not. Even if it they do not lead to missed warn-
ings, unused inputs increase the costs of test maintenance
by increasing the cognitive burden on the tester. To elim-
inate unused inputs, additional assertions could be added
to the test (e.g., adding assertEquals(E.getFirstName(),

"John") to testToString) or the unused inputs could be
removed (e.g., deleting Line 9 in testToString).

3. BACKGROUND
In this section, we provide background information on

dynamic tainting. Note that the material in this section is
paraphrased from our previous work on dynamic tainting [4].
Intuitively, dynamic tainting consists of (1) marking some
data values in a program with a piece of metadata called
a taint mark, and (2) propagating taint marks according
to how data flows in the program at runtime. In this way,
dynamic tainting can track and check the flow of information
through a program while it executes.

Information flows through a program in two ways: through
data dependences and through control dependences. We
illustrate these two kinds of flows using the code examples
in Figure 2. First, consider the code in Figure 2a. Assume
that variable a is tainted with taint mark ta at Line 2 and
variable b is tainted with taint mark tb at Line 3. Given this
assignment of taint marks, variables x, y, and z would be
tainted, at the end of the execution, with sets of taint marks
{ta}, {tb}, and {ta, tb}, respectively. Taint mark ta would be
associated with x because the value of a is used to calculate
the value of x (x = a + 2), that is, x is data dependent on
a. Analogously, y would be tainted with tb because the value
of b is used to calculate the value of y (y = b * 4). Finally,
z would be tainted with both ta and tb because the values of
both x and y are used to compute the value of z (z = x +

y), that is, z is indirectly data dependent on both a and b.
Consider now the code in Figure 2b and assume that vari-

able a is tainted with taint mark ta at Line 2. Although a’s
value is not directly involved in the computation of x in this
case, it nevertheless affects x’s value: the outcome of the
predicate at Line 3 decides whether Line 4 or Line 6 will be
executed, that is, the statements at Lines 4 and 6 are control
dependent on the statement at Line 3. Therefore, the value
of x at the end of the execution would be associated with
taint mark ta.

In general, the propagation of taint marks along data de-
pendences is called data-flow propagation and the propagation
along control dependences is called control-flow propagation.

4. DETECTING BRITTLE ASSERTIONS
AND UNUSED INPUTS

This section presents our technique for helping testers
improve the quality of their test oracles. We first provide
an intuitive description of the technique and then discuss its
main characteristics in the following 4 steps.

4.1 Overview
The overall goal of the technique is to reduce the costs

of testing by automatically identifying, and helping testers
fix, both brittle assertions and unused inputs. The basic
intuition behind the approach is that dynamic tainting, due
to its ability to mark and track inputs at runtime, can be
successfully used to accomplish this goal. In this spirit, our
approach works by (1) assigning taint marks to two types
of inputs: inputs that are controlled by the test and inputs
that are not controlled by the test, (2) tracking both types
of inputs by suitably propagating the taint marks as a test
executes, and (3) identifying, when an assertion is executed,
which taint marks are associated with the values checked by
the assertion. The taint marks discovered in the third step
allow for identifying situations where a test checks too much
(i.e., is brittle) and situations where a test checks too little
(i.e., has unused inputs).

Before presenting the details of the approach, we discuss
how it works on testToString from Figure 1. This test is
brittle because it contains assertions about values derived
from uncontrolled inputs, and also has unused inputs because
some controlled inputs, or values derived from them, are not
checked by an assertion. Figure 3 provides an intuitive view
of how our technique can detect both problems.

The top of Figure 1 shows testToString’s inputs. Note
that the inputs are divided into two categories: controlled

testToString

ssn == null total salary == 200.00

Uncontrolled
inputs
null
ssn

0.5
commission rate

null
last name

"John"
first name

200
gross sales

100
base salary

Controlled
inputs

Assertions

last name == "null"

Figure 3: Intuitive view of the application of our tech-
nique to testToString from Figure 1.

inputs and uncontrolled inputs. Intuitively, controlled inputs
are values that are provided as part of the test itself (in this
case, “John”, 200 and 100) and uncontrolled inputs are inputs
that are not explicitly set during the execution of the test (in
this case null, used to initialize lastName and ssn, and 0.5,
used to initialize commissionRate). Section 4.2 provides a
detailed discussion of how the technique identifies controlled
and uncontrolled inputs. To make the example more clear,
each input shows both the value (top) and a brief description
of what the value represents (bottom). For example, the
value “John” represents the first name of the employee, the
value 200 represents the employee’s gross sales value, etc.

The bottom of Figure 1 shows, conceptually, the test’s
oracle. The call to assertEquals at Line 15 implicitly checks
whether the employee’s first name is equal to “John”, whether
the employee’s social security number is equal to null, and
whether the employee’s total salary is equal to 200.00.

The lines that traverse testToString illustrate, intuitively,
how our technique assigns a unique taint mark to each input.
In the figure, each input is the source of a unique line. In
addition, the color and style of the lines indicate the type
of input: green, dashed lines indicate taint marks assigned
to controlled inputs and solid, red lines indicate taint marks
assigned to uncontrolled inputs. In the remainder of the
paper, we refer to taint marks assigned to controlled inputs
as c-marks and taint marks assigned to uncontrolled inputs
as u-marks. The lines in the figure also illustrate how our
technique tracks inputs at runtime, by propagating the taint
marks as the test executes. For example, the line connecting
the input“null”to the assertion last name == null indicates
that the value checked by the assertion (the employee’s last
name) is derived from the value null. Similarly, the lines that
connect the inputs 200, 100, and 0.5 to the assertion total

salary == 200.00 indicate that the value checked by the
assertion (the employee’s total salary), is derived from the
values 200, 100, and 0.5. The technique uses this information
to detect brittle assertions and unused inputs. In Figure 3,
both types of errors are shown using a bug icon.

Brittle assertions are detected by (1) identifying, when an
assertion occurs, the set of taint marks associated with the
values checked by the assertion, and (2) checking whether the
set of taint marks contains a u-mark. If the set does contain a

u mark, the assertion is considered to be brittle. For example,
as Figure 3 shows, there are three taint marks associated
with the value checked by the assertion total salary ==

200: the taint marks for 200, 100, and 0.5. Because the
taint mark for 0.5 is a u-mark, the technique identifies this
assertion as brittle. Similarly, the other two assertions are
also identified as brittle because the values that they check
are tainted with a u-mark.

Unused inputs are detected by (1) computing the union
of all taint marks associated with every value checked by
an assertion, and (2) checking whether the union contains
every c-mark assigned during the execution of the test. If a
c-mark is not present in the union, its corresponding input
is unused. For example, in Figure 3 the union of all taint
marks associated with values checked by the assertions does
not contain the c-marks for “John”. Consequently, “John” is
identified as an unused input.

In addition to detecting brittle assertions and unused in-
puts, the information provided by propagating taint marks
is used to give testers additional data about the identified
errors. Intuitively, the technique tracks backwards to identify
the origins of the problems and outputs the source of each
input (i.e., the locations where the controlled and uncon-
trolled inputs were assigned a taint mark). These locations
can serve as a starting point to help testers fix the identified
problems with their assertions.

4.2 Input Tainting
Input tainting is responsible for associating taint marks

with a test’s inputs. The technique intercepts the execution
of the test at specific points and assigns either an c-mark,
for controlled inputs, or a u-mark, for uncontrolled inputs.

4.2.1 Tainting Controlled Inputs
Currently, our technique considers two types of values to

be controlled inputs. First, the technique considers values
(constants) that are (1) used during the execution of the test
method itself, and (2) not passed to an assertion method to
be controlled inputs. For example, in Figure 1 the constant
“John” used at Line 9 is a controlled input, but the constant
“Moore” at Line 20 is not because it is used as an argument
to assertEquals on Line 21. The decision to only include
constants in the test method itself is based on our experi-
ence, domain knowledge, and intuition about how testers
write tests. Initially, the technique also considered constant
values from the test’s setup code to be controlled inputs.
However, we found that many tests use the same setup code
to construct a complex state. While, when considered indi-
vidually, the tests appear to have unused inputs (i.e., parts
of the common state that are not checked), when they are
considered collectively, they check the entire state. In future
work, we plan to extend the technique to consider entire test
suites rather than individual tests when identifying missing
assertions (see Section 7).

Second, the technique considers the return values of no-
argument methods called in the test method itself and also
implemented in the test class to be controlled inputs. We
found that no-argument methods are frequently used to sepa-
rate long sequences of initialization code from a test. Moving
such initialization code to a separate method decreases the
size of the test, which can improve its readability and under-
standability. Because such methods are conceptually part of
the test, we consider their results to be controlled inputs.

To taint constants that are used as part of the test method,
the technique simply intercepts the loading of the constants
and applies a unique c-mark to the loaded constant. Sim-
ilarly, to taint the return value of no-argument methods
implemented in test suite, the technique intercepts the test’s
execution immediately after the method returns and applies
a unique c-mark to the return value. Note that if either type
of controlled input is used repeatedly, as would be the case
inside of a loop, the technique reuses the same c-mark for
each iteration. Based on the results of our experiments (see
Section 5), we found that this approach produces the most
understandable reports. From the point of view of a tester,
regardless of the number of times an input is used, it is still,
conceptually, the same input.

As a concrete example of how our technique assigns c-marks
to controlled inputs, consider testToString in Figure 1. The
technique identifies three controlled inputs in this test: the
literal value “John” used at Line 9, the literal value 200 used
at Line 10, and the literal value 100 used at Line 11. When
each of these constants is loaded, the technique assigns a
unique c-mark to each value (e.g., c1 is assigned to “John”,
c2 is assigned to 200, and c3 is assigned to 100).

4.2.2 Tainting Uncontrolled Inputs
Currently, our technique considers two types of values to

be uncontrolled inputs. First, the values of global variables
(static, mutable fields) are considered to be uncontrolled
inputs. The intuition behind this choice is that reading
the value of a global variable is the most likely way for
a test to unintentionally depend on a value that it does
not control. Because globals variables maintain their state
and can be written to at any time, a test has no way of
knowing what values they contain. Similarly, tests can also
unintentionally depend on the contents of the files, databases,
network connections, etc. We chose not to consider values
read from such sources as uncontrolled inputs because unit
tests typically use mock objects instead of the real resources.

Second, the values of all non-final fields in the test’s contain-
ing class are considered as uncontrolled inputs. We choose
to consider such values because the fields of the test’s class’s
are essentially global variables within the context of the test
class. Their values can be changed by any test method inside
the class.

To assign u-marks to global variables, the technique iter-
ates over all of the classes that are loaded at the start of the
test. For each loaded class, the technique assigns a unique
u-mark to each non-final, static field.

To assign u-marks to the values of the test’s class’s fields,
it is necessary to understand how fields are initialized by the
Java Virtual Machine (JVM). When an object is initialized,
each of its fields is assigned the initial value for its type.2 Then,
if the field has an variable initializer (e.g., public int i =

5;), code added by the compiler to the object’s constructors
evaluates the variable initializer and assigns the result to the
field. This means that, in order to assign taint marks to
the test’s class’s fields, the technique must intercept object
initialization as well as the execution of variable initializers.
If only object initialization was intercepted, the taint marks
associated with the fields would be overwritten when the
result of the variable initializer was assigned to the field
(see Section 4.3 for additional information on how taint marks

2
http://docs.oracle.com/javase/specs/jls/se7/html/jls-

4.html#jls-4.12.5

are propagated). If only the execution of variable initializers
was intercepted, fields without a variable initializer would
not be assigned a taint mark.

To assign taint marks to the initial values of the test’s
class’s fields, the technique assigns a unique u-mark to each
field at the end of object initialization. To assign taint marks
to the results of variable initializers, the technique identi-
fies the code added by the compiler by checking the debug
information. Compiler-added code will have a source line
location that is outside the bounds of the constructor. After
identifying the compiler-added code, the technique intercepts
the execution immediately after the variable initializer is
evaluated and applies a unique u-mark to the result. Note
that taint marks assigned to the results of variable initial-
izers will overwrite the taint marks assigned during object
initialization. While this does not impact the performance
of the technique—the only consequence is that unnecessary
taint marks are created—a simple static-analysis could be
used to identify fields with variable initializers. Such fields
could then be skipped when taint marks are assigned during
the initialization process.

As a concrete example of how our technique assigns u-
marks to uncontrolled inputs, consider testToString in Fig-
ure 1. EmployeeTest has six fields, only one of which has a
variable initializer (commissionRate). When an instance of
EmployeeTest is initialized, all six of its fields are assigned a
unique u-mark (e.g., firstName is assigned u1, lastName is
assigned u2, ssn is assigned u3, baseSalary is assigned u4,
commissionRate is assigned u5, and grossSales is assigned
u6). During the execution of EmployeeTest’s constructor,
when commissionRate is assigned the value 0.5, the taint
mark assigned during object initialization is overwritten with
a fresh taint mark (e.g., u5 is overwritten by u7). Later
when testToString is executed, the technique would as-
sign a unique u-mark to each static, mutable field of every
currently loaded class.

4.2.3 Recording Supplemental Information
Regardless of the type of taint mark, our technique per-

forms an additional action when assigning a taint mark t to
an input i. To help testers debug the problems identified
by the technique, additional information is recorded. More
specifically, the technique logs a tuple 〈t, loc, value〉, where
loc is the location in the execution where the taint mark was
associated with the input and value is the initial value of the
input. The location is expressed differently depending on
the type of taint mark. For c-marks, the location is the file
name and line number corresponding to where the constant
or return value was used. For u-marks, the location is the
fully qualified name (field name and declaring class name) of
the field that contains the input. This information is used
by our technique when generating reports, as described in
Section 4.4.

4.3 Taint Mark Propagation
A taint propagation policy specifies how taint marks are

propagated during execution. Typically it is defined along
two dimensions: how to combine taint marks and which types
of dependences to consider.

Our technique’s policy for combining taint marks is fairly
intuitive. In general, the technique taints all values written
by a statement with the union of all taint marks associated
with the values read by that statement. For instance, after

the execution of statement x = y + z, where y and z are
tainted with taint marks t1 and t2, respectively, x would
be associated with the set of taint marks {t1, t2}. The only
type of statement where the techniques deviates from this
general policy is the execution of native methods. Because
native methods are executed by the JVM, it’s is often unclear
which values are read by the native method. Rather than
require a precise model of every native method, the technique
conservatively assigns the union of all taint marks associated
with the native method’s arguments to its return value.

When choosing which dependences to consider, our tech-
nique considers both data-flow and control-flow dependen-
cies. Identifying data-flow dependencies is trivial as they
are encoded as the semantics of the language. Identifying
control-flow dependencies is more challenging.

A control-flow dependence arises when a conditional branch
b decides whether a statement s is executed. In this case, the
values that affect b’s outcome indirectly affect the values of
any data written by s. Therefore, to be conservative, the taint
marks associated with the values read by b must be combined
and associated with the values written by s. To achieve this,
our technique uses an approach that we proposed in prior
work [5]. In brief, the technique keeps track of relevant
taint marks at runtime by leveraging statically-computed
post-dominance information. When an execution reaches
a conditional branch b, the technique (1) computes T , the
union of the taint marks associated with the values read by
b, and (2) adds a pair 〈b, T 〉 to CF , the set of active control
flow marks. When execution reaches the immediate post-
dominator of a conditional branch b, it removes from CF
all pairs 〈x, y〉 such that x is equal to b. Note that CF will
contain multiple pairs with x equal to b when b is executed
as part of a loop. Each iteration will add a new pair 〈b, T 〉
to CF , all of which must be removed when the immediate
post-dominator is executed. When a statement s is executed
and CF is not empty, the technique computes the union of
all active control flow marks (i.e., the union of y, for each
pair 〈x, y〉 in CF) and adds this set to the set of taint marks
associated with the values written by s.

4.4 Checking Taint Marks
This third part of our technique, checking, is responsible

for two tasks: (1) identifying brittle assertions and unused
inputs, and (2) generating the error reports that will be
presented to testers.

To identify brittle assertions, the technique intercepts the
execution of comparison operations (e.g., greater than, less
than, equals, etc.) that occur inside the execution of an asser-
tion method (e.g., assertEquals). Intercepting the execution
of comparison operations, rather than simply examining the
actual argument of the assertion method, allows for a more
precise identification of brittle assertions. For example if the
actual parameter of the assertion method is an object, exam-
ining the taint marks associated with all of the object’s fields
is likely to be incorrect as not all of the fields are necessarily
involved in checking whether the actual and expected argu-
ments are equal. Rather than attempting to identify, a priori,
which values are used to check for equality, the technique
can simply monitor the comparison operations to achieve the
same effect. In addition, testers often inadvertently swap
the order of the actual and expected arguments which means
that the actual parameter may not in the correct location
which would result in incorrect reports.

testToString appears to be brittle. The assertions at the
following lines check values that are derived from
uncontrolled inputs:

assertEquals at Line 25 depends on:
EmployeeTest.lastName being null (object initialization)
EmployeeTest.ssn being null (object initialization)
EmployeeTest.commissionRate being 0.5 (object initialization)

(a) Report for brittle assertions.

testToString appears to be missing one more assertions. The
following values are provided as input but are not checked by
an assertion:

"John" (EmployeeTest.java, Line 9)
(b) Report for unused inputs.

Figure 4: Example reports output by our technique when
run on testToString from Figure 1.

For each comparison operation inside of an assertion method,
the technique identifies the taint marks associated with the
values involved in the comparison and checks whether the
set of identified taint marks contains a u-mark. If a u-mark
is found, the technique detects a brittle assertion.

To identify unused inputs, the technique calculates the
union of all c-marks that were encountered when checking
for brittle assertions. The technique then subtracts this set
from the set of all c-marks that were assigned to controlled
inputs. If the resulting set is not empty, the inputs initially
assigned with the remaining c-marks are marked as unused.

As a concrete example of how the checking part of the
technique operates, consider again testToString from Fig-
ure 1. For this test, the technique would intercept the com-
parison operations that occur inside the call to assertE-

quals. Because the actual value is a string, the String

class’s equals method is used to perform the check. The
equals method uses a series of equality comparisons (i.e., ==)
to check whether the same characters make up each string.
Each time this equality is executed, the technique determines
whether either character is tainted with a u-mark. Because
the actual value is derived from three uncontrolled inputs,
three u-marks are found and a brittle assertion is detected.

At the end of the test’s execution, the technique calculates
the union of all encountered c-marks. Because only values
tainted with only two of three total c-marks were checked
by the assertion, an unused input report for the remaining
mark (the one initially assigned to “John”) is created.

Figure 4 shows the error reports generated by the tech-
nique when run on testToString. As the figure shows, both
the brittleness report (top) and the unused input report (bot-
tom) include all of the information necessary to help testers
fix the identified issues. The brittleness report includes the
name and location of the brittle assertion (assertEquals on
Line 25), the uncontrolled values that were used to com-
pute the values checked by the assertion (null, null, and 0.5),
the names of the fields where the uncontrolled values were
stored (EmployeeTest.firstName, EmployeeTest.ssn, and Em-
ployeeTest.commissionRate), and the locations where the
uncontrolled values were stored into the fields (during object
initialization). Note that to collect the location information,
the technique traverses the test’s call stack to find the name
of the outermost enclosing assertion method invocation and
the location where the assertion method was invoked. The
unused input report includes the controlled inputs that were
not checked by an assertion and the line number where the
value was loaded.

4.5 Removing False Positives
The purpose of the fourth part of the technique is to filter

false positive error reports. Taint mark propagation is known
to be imprecise, especially in the case of native methods.
As a result, error reports generated by the third part of
the technique may be false positives. More specifically, the
technique may generate false positive reports if it under-
propagates c-marks or over-propagates u-marks. As a result,
controlled inputs may appear to be unused when in fact they
are used and uncontrolled inputs may appear to be checked
by an assertion when in fact they are not.

To eliminate such false positives, the technique uses an
approach inspired by mutation testing [7, 10]. Essentially,
the technique preemptively makes changes that may happen
in the future and checks to see whether such changes alter
the outcome of the test. More specifically, for each input
that is identified as the cause of a brittle assertion or as an
unused input, the technique re-executes the test. As the test
is being re-executed, at the point when the taint mark was
assigned to the input in the original execution, the technique
mutates the value of the input to a randomly chosen value of
the same type. Note that data- and control- flow analysis is
not needed to accomplish this. The technique then compares
the outcomes of the re-executed and original executions.

In the case of uncontrolled inputs that cause brittle as-
sertions, we would expect that changing the input’s value
would alter the outcome of the test. If a test checks values
derived from an input, changing the value of the input should
change the outcome of the test. If the outcome of the test
does change, the report is a true positive (i.e., if the change
were to be made, the test would fail) and is presented to the
user. Conversely, if the outcome of the test does not change,
the report is a false positive (i.e., the u-mark should have
been over written but was not) and is discarded.

In the case of unused inputs, we would expect that changing
the value of the input would not alter the outcome of the test.
If an input is really unused, its value doesn’t matter. If the
outcome of the test does not change, the unused input report
is a true positive and is presented to the user. Conversely,
if the outcome of the test does change, the error report is a
false positive (i.e., the c-mark should have propagated to an
assertion but did not) and is discarded.

Note that this filtering strategy is precise—reports that
are identified as true positives have an associated witness (a
concrete change that will cause the test to fail)—but not safe—
reports that are identified as false positives may actually
be true positives. True positives can be identified as false
positives from the point-of-view of the test when the randomly
chosen value is indistinguishable from the original value. For
example, consider an assertion that checks whether a value
is positive. If the original value checked by the assertion is
1 and the randomly chosen replacement is 5, the outcome
of the assertion will be the same for both values. To reduce
the possibility of this occurring, multiple re-executions, each
with a unique value, can be run or additional analysis could
be performed to identify values that are more likely to cause
the outcome of the test to change.

In the case of testToString, both of the error reports
generated by the third part of the technique are true positives.
Changing the value of commissionRate causes the test to
fail and changing the value of the employee’s first name does
not cause the test to fail.

5. EVALUATION
To evaluate our technique, we created a prototype imple-

mentation called OraclePolish and analyzed over 4,000 tests
for real Java applications. Using the output of the tool, we
investigated the following research questions:

RQ 1—Effectiveness. Can the technique detect both brittle
assertions and unused inputs in real test suites?

RQ 2—Cost. What are the costs associated with using the
technique and are they reasonable?

Note that RQ1 provides a quantitative assessment of the
technique; it does not make any assumptions about whether
the reported errors are likely to cause problems in the future.
Conversely, RQ2 is a qualitative assessment that does take
into account the users perspective.

The remainder of this section describes (1) OraclePolish,
the prototype implementation of our technique, (2) the exper-
imental subjects we chose, (3) the experimental protocol we
used and the data we generated, (4) the results of evaluation,
and (5) threats to the validity of our results.

The prototype implementation of our technique, as well as
the subjects we chose and the experimental data we generated,
are available from: http://bitbucket.org/udse.

5.1 Prototype Tool
OraclePolish is a prototype implementation of our tech-

nique for applications written in the Java language using the
JUnit testing framework. It consists of three separate com-
ponents: the analyzer, the runtime system, and the mutator.

The primary task of the analyzer is to statically compute
the information needed by the runtime system. More specifi-
cally, the analyzer computes the post-dominance information
needed to perform control-flow propagation. The current im-
plementation of the analyzer uses the T.J. Watson Libraries
for Analysis (WALA) to perform the necessary analyses. We
choose WALA because it (1) analyzes Java bytecode, which
means that we do not need to obtain the source code for
all parts of the application, (2) provides built-in dominator
analyses, and (3) is extensible enough to allow us to easily
implement the other necessary analyses.

The runtime system implements the input tainting, taint
mark propagation, and checking parts of the technique de-
scribed in Section 4.2, Section 4.3, Section 4.4, respectively.
The current implementation of the runtime system is an ex-
tension to Java PathFinder (JPF), an explicit state software
model checker for Java software.3 To assign taint marks to
inputs, OraclePolish uses JPF’s listener callbacks to intercept
class and object initialization and to intercept the execution
of instructions that load constants. To implement taint mark
propagation, OraclePolish uses JPF’s bytecode overloading
facilities to replace each Java bytecode with a modified ver-
sion that replicates the instruction’s original semantics while
also propagating taint marks. Finally, to implement checking,
OraclePolish again uses JPF’s listener callbacks to intercept
the execution of comparisons instructions that occur inside
of assertion methods.

The mutator implements the part of the technique that
filters false positives (see Section 4.5). It is also implemented
as a plugin to JPF. Similarly to the runtime system, the
mutator uses JPF’s listener callbacks to intercept class and

3
http://javapathfinder.sourceforge.net/

object initialization and to intercept the execution of instruc-
tions that load constants. However, instead of assigning taint
marks, the mutator randomly changes the values of the in-
puts. Currently, the mutator re-executes the test three times.
As we demonstrate in Section 5.4, this number is sufficient
to eliminate many false positives.

5.2 Subjects
The goal of the technique is to improve oracle quality by

detecting brittle assertions and unused inputs. To suitably
evaluate the technique with respect to this goal, we selected
the test suites of 20 applications as our subjects. Table 1
describes the applications. In the table, the first column,
Subject shows the name and version of each application, if
available. The first eight applications (CommissionEmployee
through Sudoku) are taken from the Proteja Test Suite Ex-
ecutor and Coverage Monitor repository.4 The remaining
subjects were obtained from various repositories including:
(1) the Software-artifact Infrastructure Repository (SIR),5

which provides a variety of open-source projects for empirical
software engineering, (2) SourceForge,6 a popular repository
for open-source projects, and (3) Apache Commons,7 a col-
lection of reusable components. The second column, LoC,
shows the number of non-blank, non-comment, lines of code
that comprise the application and the third column, # Tests
shows the number of tests in each application’s test suite.

We chose the test suites of these applications as subjects
for several reasons. First, the applications cover a variety of
subject domains. For example, Commons CLI is a library for
processing command-line options, Commons IO is a library
for performing various input/output operations, Joda-Time
is a library for handling dates and times, etc. Second, the
applications vary in size. For example, Commons-math has
over 70,000 lines of code, while Sudoku only has 376 lines of
code. Finally, the test suites also vary in size. The test suites
for some of the application contain more than 3,000 tests
while others contain fewer than 20. Selecting test suites and
applications of various sizes and subject domains improves
the generalizability of our results.

After selecting our subjects, we performed an initial sanity
check and removed any tests that can not be run using JPF.
The number of remaining tests is shown in the fourth column,
Executable. For example, although Commons-beanutils-
1.8.3’s test suite contains 810 tests, 73 of which are executable
using JPF. After filtering, we were left with 4,718 tests.

5.3 Experimental Protocol and Data
To generate the experimental data necessary for answering

our research questions, we ran OraclePolish on each of our
4,718 tests and recorded its output. The experiments were all
conducted on the same computer: a machine running Ubuntu
12.04 LTS 64-bit edition with a 3.40 GHz Intel Core i7-2600
processor and 8 GB of memory. Java version 1.7.0 03 was
used and was configured with 2 GB of heap space (default).

Table 1 shows the experimental data that we generated.
The last four columns in the table show the number of reports
generated by the technique, # Reports, and the number
of reports that are true positives, # TP, for both Brittle
Assertions and Unused Inputs. The number of reports is the

4
https://code.google.com/p/proteja/

5
http://sir.unl.edu

6
https://sourceforge.net

7
http://commons.apache.org

Table 1: Experimental subjects and data.

Test Suite Brittle Assertions Unused Inputs

Subject LoC # Tests # Executable # Reports # TP # Reports # TP

CommissionEmployee 100 15 15 2 1 13 13
DataStructures 429 106 99 0 0 55 47
Employee 183 15 15 3 3 11 11
LoopFinder 49 13 13 0 0 13 5
Point 69 13 11 0 0 10 8
ReductionAndPriority 3,245 52 38 0 0 37 37
Sudoku 376 25 18 0 0 7 0

commons-beanutils-1.8.3 11,375 810 73 12 4 59 44
commons-cli-1.2 1,978 164 130 22 5 119 24
commons-collections-3.2.1 26,414 886 672 20 12 426 247
commons-io-2.4 26,614 824 236 1 0 154 78
commons-lang-3.1 23,070 2,024 1,547 128 114 1,133 549
commons-math-3.0 70,006 1,150 72 0 0 39 12
JDepend-2.9.1 2,531 39 0 0 0 0 0
Jfreechart-1.0.15 92,252 2,234 862 1 0 538 285
joda-convert-1.2 2,675 105 0 0 0 0 0
Joda-time-2.2 86,797 3,962 506 181 25 226 144
Jtopas-0.8 4,373 53 27 0 0 21 11
PMD-5.0.4 100,300 770 346 2 0 184 93

total 13,609 4,718 405 164 3,060 1,618

total number of reports generated by the checking part of the
technique (see Section 4.4) and the number of true positives
is the number of reports that remain after being filtered by
the fourth part of the technique (see Section 4.5).

5.4 RQ1: Effectiveness
The purpose of our first research question is to determine

the effectiveness of the technique at detecting brittle asser-
tions and unused inputs in real tests. To answer this question,
we first judged effectiveness quantitatively, by examining the
number of true positive reports generated by OraclePolish.

As Table 1 shows, for the subjects we considered, Oracle-
Polish was able to detect both brittle assertions and unused
inputs. In total, it detected 164 tests that contain at least
one brittle assertion and 1,618 tests that contain unused
inputs. These results are encouraging and also a bit surpris-
ing. Because most of the tests that we considered are from
the test suites of mature applications, we expected them to
contain few errors.

It is interesting to note that OraclePolish detects far more
unused inputs than brittle assertions. Intuitively, this makes
sense as unused inputs are unlikely to cause any observable
problems. While missing assertions may cause a test to pass
when it should fail, there is no way to detect this occurrence.
Similarly, there is not an easy way to measure the amount of
additional effort needed to comprehend and maintain tests
with unused inputs. As a result, unused inputs are more
likely go undetected and unfixed than brittle assertions.

The second way we judged effectiveness was by qualita-
tively assessing the reports generated by OraclePolish. In the
remainder of the section, we provide a more detailed discus-
sion of two randomly chosen brittle tests and two randomly
chosen tests with unused inputs.

Figure 6 shows an excerpt of test13666 that is part of the
test suite for Commons-cli. OraclePolish detects that the
assertion at Line 252 is brittle because it depends on several

 public class BugsTest extends TestCase {
 public void test13666() throws Exception {
229 Options options = new Options();
230 Option dir = OptionBuilder.withDescription("dir")
 .hasArg()
 .create('d');
233 options.addOption(dir);

236 final PrintStream oldSystemOut = System.out;
237 try {
239 OutputStream bytes = new ByteArrayOutputStream();

247 System.setOut(new PrintStream(bytes));

249 HelpFormatter formatter = new HelpFormatter();
250 formatter.printHelp("dir", options);

252 assertEquals("usage: dir"+eol+" -d <arg> dir"
 + eol,
 bytes.toString());
 }
 finally {
256 System.setOut(oldSystemOut);
 }
 }
 }

Figure 5: Brittle assertions in test13666

of OptionBuilder’s static fields. Because OptionBuilder

is a singleton, it is possible for other users of the class to
leave it in an indeterminate state by starting to build an
option but never calling create. Internally, create resets the
state of the OptionBuilder so that it is safe to reuse. To
prevent the possibility that OptionBuilder has already been
partially configured, the test should call OptionBuilder’s
reset method before using starting to build an option at
Line 230.

Figure 6 shows an excerpt of testPut that is part of test
suite for Commons-beanutils. OraclePolish detects that the
assertion at Line 246 is brittle because it checks the value of
stringVal. As the code shows, stringVal is a static field
of the DynaBeanMapDecoratorTestCase. Because testPut

does not control the value of stringVal, it is assuming that

 public class DynaBeanMapDecoratorTestCase extends TestCase {
 43 private static final DynaProperty[] properties =
 new DynaProperty[] { ... };

 47 private static String stringVal = "somevalue";

 52 private Object[] values = new Object[] {stringVal, ...};

 54 private BasicDynaBean dynaBean;

 public void setUp() throws Exception {
 96 dynaBean = new BasicDynaBean(dynaClass);
 97 for (int i = 0; i < properties.length; i++) {
 98 dynaBean.set(properties[i].getName(), values[i]);
 99 }

103 modifiableMap = new DynaBeanMapDecorator(dynaBean,
 false);
 }

 public void testPut() {
235 String newValue = "ABC";

246 assertEquals(stringVal,
 modifiableMap.put(stringProp.getName(),
 newValue);
247 assertEquals(newValue,
 dynaBean.get(stringProp.getName()));
248 assertEquals(newValue,
 modifiableMap.get(stringProp.getName()));
 }
 }

Figure 6: Brittle assertions in testPut

 public class DefaultKeyedValues2DTests extends TestCase {
 public void testGetRowKey() {
257 DefaultKeyedValues2D d = new DefaultKeyedValues2D();

266 d.addValue(new Double(1.0), "R1", "C1");
267 d.addValue(new Double(1.0), "R2", "C1");
268 assertEquals("R1", d.getRowKey(0));
269 assertEquals("R2", d.getRowKey(1));
 }
 }

Figure 7: Unused inputs in testGetRowKey

stringVal will not be modified between the time when the
field is initialized and the time when the assertion is executed.
To fix this error, the reference to the static field could be
replaced with the expected constant. Alternatively, if the
field were to be made final it would be guaranteed to have the
expected value. Because the majority of DynaBeanMapDec-

oratorTestCase’s other fields are final, this later option is
likely to be the correct fix.

Figure 7 shows an excerpt of testGetRowKey from JFree-
Chart’s test suite. OraclePolish detected two unused in-
puts in this test: the value “C1” at Line 266 and the value
“C1” at Line 267. Although these values are used as argu-
ments to the calls to addValue at Line 266 and Line 267,
they are not checked by an assertion. Adding additional
assertions (i.e., assertEquals("C1", d.getColumnKey(0))

and assertEquals("C1", d.getColumnKey(1))) would en-
sure that not only are the correct row keys returned, but also
that the column keys are not modified.

Figure 8 shows an excerpt of test13 from Employee’s test
suite. OraclePolish detected three unused inputs in this test:
“FN” at Line 160, “SN” at Line 161, and “ssn” at Line 162.
Although these values are used to construct s2, a new instance
of SalariedEmployee, they are never checked by an assertion.
Note that s1 is used to construct the actual value passed
to assertEquals at Line 166, not s2. In this case, it is not
clear how to best fix the test. The unused inputs could be
deleted or the actual value could be constructed using s2

instead of s1.

 public class EmployeeTest extends TestCase {
 8 private String fn, ln, ssn;
 9 private double s;

 20 SalariedEmployee s1 = new SalariedEmployee(fn,ln,
 ssn,s);

158 public void test13() {
159 s1.setWeeklySalary(10);
160 fn = "FN";
161 ln = "SN";
162 ssn = "ssn";
163 SalariedEmployee s2 = new SalariedEmployee(fn,ln,
 ssn,s);
164 String actual = s1.toString();
165 String expected = "salaried employee: null null\n"
 + "ssn: null\n"
 + "weekly salary: $10.00";
166 assertEquals(actual, expected);
167 }
 }

Figure 8: Unused inputs in test13

5.5 RQ2: Cost
The purpose of our second research question is to inves-

tigate the costs of using OraclePolish and to determine if
such costs are reasonable. Because our technique is fully
automated, the primary cost is its runtime overhead.

To investigate the runtime overhead that OraclePolish
imposes, we executed our subject tests twice, once using
the JVM and once using OraclePolish (with the preceding
static analysis), and compared the execution times of these
runs. Based on these measurements, we found that running
the tests using OraclePolish takes between 5 and 30 times
longer than running the tests using the JVM. Although this
cost is significant, we believe that it is reasonable. In our
experience, developers will accept high overheads for tools
that produce accurate results. This is especially true when,
as is the case for OraclePolish, the tools do not require any
developer interaction and can be run overnight, possibly as
part of an automated build system whose results are inspected
the next day. In addition, OraclePolish is an unoptimized
prototype. We chose to implement it as a JPF plugin because
JPF is a general platform that already implements many
of the capabilities we needed (e.g., the ability to associate
metadata with runtime values). However, JPF’s generality
comes at a cost. Based on our experience with taint-based
techniques, we believe that a custom implementation of
OraclePolish could reduce its overhead to less than 20 %,
levels that are comparable to other recent tainting-based
approaches (e.g., [1, 16]), by taking advantage of several
optimizations (e.g., [2, 20]).

5.6 Threats to Validity
There are several threats to the validity of our evaluation.

First, we considered a limited number of tests, all of which
were written in Java and used the JUnit testing framework.
In addition, we filtered out tests that could not be run using
JPF. Consequently, our results may not generalize beyond
the considered domains. However, the tests that we consid-
ered represent a wide range of application domains, sizes, and
maturity levels. Therefore, we believe that our results are
promising and motivate further research. Second, we qualita-
tively assessed the usefulness of the error reports generated
by the technique ourselves, which may introduce bias. While
we are planning to conduct a human study with developers
to eliminate this threat in the future, we did not believe that
such a study was justified at this stage of the research.

6. RELATED WORK
To the best of our knowledge, our technique is the first

technique that is able to detect both brittle assertions and
unused inputs.

Schuler and Zeller propose checked coverage as an approach
for assessing oracle quality [21]. The checked coverage of
a test or test suite is the ratio of executed statements that
compute values that are checked by the test to the total num-
ber of executed statements. A low checked coverage score
suggests that a test is likely to be missing assertions. Unlike
our technique, which uses dynamic tainting, checked coverage
uses backward dynamic slicing to compute the set of state-
ments that contribute to values checked by the test. While
dynamic tainting and dynamic slicing are similar, dynamic
tainting, due its focus on values rather than statements, pro-
vides several benefits. For example, our technique precisely
identifies unused inputs while checked coverage only identifies
sets of statements. Fixing the identified issues starting from
sets of statements rather of inputs increases the amount of
manual work that testers must perform. In addition, checked
coverage shares the common limitation of all coverage based
techniques: deciding how much coverage is sufficient. Obvi-
ously a checked coverage score of 0 % is bad, but what about
a score of 60 %?

State coverage, originally proposed by Koster and Kao [11,
12] and extended by Vanoverberghe et al. [25], is similar
to checked coverage. The primary difference is that state
coverage is the ratio of executed output defining statements
(ODS)—statements that define a variable that can be checked
by the test suite—to the total number of ODSs. Unfortu-
nately, there have only been small case studies on the tech-
nique’s effectiveness so it is not clear how it compares to
checked coverage. However, because state coverage is also
a coverage metric it shares the same limitations as state
coverage as compared to our technique.

The brittle assertion problem is closely related to the
test dependency problem. A recent study [29] proposed an
approach for detecting test dependencies in existing test
suites. The authors decribed a k-bounded dependence aware
algorithm which trims the search space for re-ordering the
test methods which otherwise requires a full permutation
over the test methods. The remaining sequences will be
executed and checked to see if this certain ordering will alter
the outcomes of some tests in the sequence. However, the
search space is still so large that the authors had to limit
the length of the sequence up to 2. Moreover, the detection
on dependencies are limited to the ones which will unveil
their presence by altering the test outcome in a certain order.
Our technique presents a more precise data flow analysis
that will further narrow down the search space and also be
aware of the dependencies which not only cause changes of
outcomes in a certain order but also lie deep in the test suite
and application code such that failing the tests in the future.

In addition to techniques that attempt to improve the
quality of existing oracles, there are also several techniques
that attempt to automatically create oracles. Some of these
techniques use mutation testing to discover how success-
ful an oracle is at detecting mutants. For example, Staats
et al. use mutation testing to support the creation or oracles
by identifying the program variables are most successful at
detecting mutants and therefore should be checked by an
assertion [23]. Conversely, Fraser and Zeller use mutation
testing to generate complete test cases, including oracles [8].

Another recent work by Loyola et al. presents an approach
that supports the generation of test oracles [13]. Their tech-
nique firstly assumes that the test inputs have already been
determined by the testers and then ranks variables based on
the interactions and dependencies observed between them
during program execution. The authors conducted an em-
pirical study by comparing the effectiveness, defined by how
many mutants killed, of the oracle data sets selected by their
technique and the original oracle data sets by the testers,
which shows improvement in finding faults. Other techniques
create oracles from observed invariants (e.g., [17–19, 24]) or
generate oracles for specific domains (e.g., GUIs [27], web
pages [3, 14]).

Finally, the large number of existing approaches for generat-
ing test inputs are also related to our work (e.g., [6, 7, 9, 15, 17–
19, 22, 26, 28]). However, such approaches are not alterna-
tives to our technique. Instead they are complementary. As
we discuss in Section 7, we plan on investigating how our
technique can be combined with these approaches to improve
the tests that they generate.

7. CONCLUSIONS AND FUTURE WORK
In this paper we presented a new technique for automat-

ically analyzing test oracles. The technique is based on
dynamic tainting and can detect both brittle assertions—
assertions that depends on values that are derived from
uncontrolled inputs—and unused inputs—inputs provided
by the test that are not checked by an assertion. We also
presented OraclePolish, an implementation of the technique
that can analyze tests that are written in Java and use the
JUnit testing framework. Using OraclePolish, we conducted
an empirical evaluation of the tool’s performance on more
than 4,000 tests from real applications. The results of the
evaluation demonstrate that OraclePolish is able to detect
both brittle assertions and unused inputs in real tests at a
reasonable cost.

In future work, we will implement the automated genera-
tion of recomendations to fix the reported oracle problems.
The possible fixes follow very regular and specific patterns
so that templates will be provided for the developers. We
will investigate the possibility of extending the technique to
analyze entire test suites rather than individual tests. This
will allow the technique to more precisely handle certain
situations, such as when logically connected assertions are
split among multiple test cases (e.g., the one assertion per
test style). We are also planning on conducting additional
evaluations of the technique. In particular, we are interested
in conducting human studies with testers to qualitatively
assess the technique more fully, such as the importance that
developers would give to such reported issues, and increasing
the number and type of subjects that we consider. Finally, we
will investigate how our technique could be integrated with
existing test generation approaches to improve the quality of
the generated tests.

8. REFERENCES
[1] E. Bosman, A. Slowinska, and H. Bos. Minemu: The

world’s fastest taint tracker. In Proceedings of the
14th International Conference on Recent Advances in
Intrusion Detection, pages 1–20, 2011.

[2] M. Chabbi. Efficient taint analysis using multicore
machines. Master’s thesis, University of Arizona, 2007.

[3] S. Choudhary, H. Versee, and A. Orso. WEBDIFF:
Automated identification of cross-browser issues in web
applications. In Proceedings of the 2010 IEEE Interna-
tional Conference on Software Maintenance, pages 1–10,
2010.

[4] J. Clause and A. Orso. Penumbra: Automatically identi-
fying failure-relevant inputs using dynamic tainting. In
Proceedings of the Eighteenth International Symposium
on Software Testing and Analysis, pages 249–260, 2009.

[5] J. Clause, W. Li, and A. Orso. Dytan: A generic
dynamic taint analysis framework. In Proceedings of
the 2007 International Symposium on Software Testing
and Analysis, pages 196–206, 2007.

[6] C. Csallner and Y. Smaragdakis. Jcrasher: An auto-
matic robustness tester for Java. Software: Practice
and Experience, 34(11):1025–1050, June 2004.

[7] R. A. DeMillo, R. J. Lipton, and F. G. Sayward.
Hints on test data selection: Help for the practicing
programmer. Computer, 11(4):34–41, Apr. 1978.

[8] G. Fraser and A. Zeller. Mutation-driven generation of
unit tests and oracles. In Proceedings of the 19th Inter-
national Symposium on Software Testing and Analysis,
pages 147–158, 2010.

[9] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed
automated random testing. In Proceedings of the 2005
ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 213–223, 2005.

[10] R. G. Hamlet. Testing programs with the aid of a
compiler. IEEE Trans. Softw. Eng., 3(4):279–290, July
1977.

[11] K. Koster. A state coverage tool for JUnit. In Com-
panion of the 30th International Conference on Software
Engineering, pages 965–966, 2008.

[12] K. Koster and D. C. Kao. State coverage: A structural
test adequacy criterion for behavior checking. In Proceed-
ings of the 6th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Sym-
posium on The Foundations of Software Engineering,
pages 541–544, 2007.

[13] P. Loyola, M. Staats, I.-Y. Ko, and G. Rothermel.
Dodona: automated oracle data set selection. In Pro-
ceedings of the 14th International Symposium on Soft-
ware Testing and Analysis, pages 193–203, 2014.

[14] A. Mesbah and M. R. Prasad. Automated cross-browser
compatibility testing. In Proceedings of the 33rd In-
ternational Conference on Software Engineering, pages
561–570, 2011.

[15] B. P. Miller, L. Fredriksen, and B. So. An empirical
study of the reliability of unix utilities. Commun. ACM,
33(12):32–44, December 1990.

[16] M. Ozsoy, D. Ponomarev, N. Abu-Ghazaleh, and T. Suri.
SIFT: A low-overhead dynamic information flow track-
ing architecture for smt processors. In Proceedings of
the 8th ACM International Conference on Computing
Frontiers, pages 37:1–37:11, 2011.

[17] C. Pacheco and M. D. Ernst. Eclat: Automatic gener-
ation and classification of test inputs. In Proceedings
of the 19th European Conference on Object-Oriented

Programming, pages 504–527, 2005.
[18] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball.

Feedback-directed random test generation. In Proceed-
ings of the 29th International Conference on Software
Engineering, pages 75–84, 2007.

[19] B. Robinson, M. D. Ernst, J. H. Perkins, V. Augustine,
and N. Li. Scaling up automated test generation: Auto-
matically generating maintainable regression unit tests
for programs. In Proceedings of the 26th IEEE/ACM
International Conference on Automated Software Engi-
neering, pages 23–32, 2011.

[20] P. Saxena, R. Sekar, and V. Puranik. Efficient fine-
grained binary instrumentation with applications to
taint-tracking. In CGO ’08: Proceedings of the Sixth
Annual IEEE/ACM International Symposium on Code
Generation and Optimization, pages 74–83, 2008.

[21] D. Schuler and A. Zeller. Assessing oracle quality with
checked coverage. In Proceedings of the Fourth IEEE In-
ternational Conference on Software Testing, Verification
and Validation, pages 90–99, 2011.

[22] K. Sen, D. Marinov, and G. Agha. Cute: a concolic unit
testing engine for c. In Proceedings of the 10th European
software engineering conference held jointly with 13th
ACM SIGSOFT international symposium on Founda-
tions of software engineering, pages 263–272, 2005.

[23] M. Staats, G. Gay, and M. P. E. Heimdahl. Automated
oracle creation support, or: How i learned to stop wor-
rying about fault propagation and love mutation testing.
In Proceedings of the 34th International Conference on
Software Engineering, pages 870–880, 2012.

[24] K. Taneja and T. Xie. Diffgen: Automated regres-
sion unit-test generation. In Proceedings of the 23rd
IEEE/ACM International Conference on Automated
Software Engineering, pages 407–410, 2008.

[25] D. Vanoverberghe, J. de Halleux, N. Tillmann, and
F. Piessens. State coverage: Software validation met-
rics beyond code coverage. In Proceedings of the 38th
International Conference on Current Trends in Theory
and Practice of Computer Science, pages 542–553, 2012.

[26] W. Visser, C. S. Pǎsǎreanu, and S. Khurshid. Test
input generation with java pathfinder. In Proceedings
of the 2004 ACM SIGSOFT International Symposium
on Software Testing and Analysis, pages 97–107, 2004.

[27] Q. Xie and A. M. Memon. Designing and comparing
automated test oracles for gui-based software applica-
tions. ACM Transactions on Software Engineering and
Methodology, 16(1), February 2007.

[28] T. Xie, D. Marinov, W. Schulte, and D. Notkin. Sym-
stra: A framework for generating object-oriented unit
tests using symbolic execution. In Proceedings of the
11th international conference on Tools and Algorithms
for the Construction and Analysis of Systems, pages
365–381, 2005.

[29] S. Zhang, D. Jalali, J. Wuttke, K. Muslu, W. Lam,
M. D. Ernst, and D. Notkin. Empirically revisiting the
test independence assumption. In Proceedings of the
14th International Symposium on Software Testing and
Analysis, pages 385–396, 2014.

